Addis Coder 2023 Quiz 4

Problem 1

What is the output of $\operatorname{bool}(0.0)$?
A) True
B) False
C) 0.0
D) 1.0

Problem 2

How do you get the last element of a list lst ?
A) $\operatorname{lst}[-1]$
B) $\operatorname{lst}(-1)$
C) lst[len(lst)]
D) lst(len[lst])

Problem 3

What happens when this function is called with printNumbers(5)? (Hint: look at the syntax carefully!)
def printNumbers(number):
for i in range(len(number)):
print(i)
printNumbers(5)
A) All numbers from 1 to 5 are printed.
B) All numbers from 0 to 4 are printed.
C) Infinite loop. The code runs but does not terminate.
D) Error. The code does not run at all.

Problem 4

What will the following recursive function return for $f(5)$?
def $f(n)$:
if $\mathrm{n}==0$:
return 0
else:
return $n+f(n-1)$
A) 10
B) 15
C) 5
D) 25

Problem 5

Which statement about binary search is false?
A) It is more efficient than linear search for large datasets.
B) The list must be sorted before performing a binary search.
C) Binary search starts searching from the middle of the list.
D) Binary search is the fastest way of finding an item in a dictionary.

Problem 6

In dynamic programming, the memoization table is used to:
A) Count the number of operations taken.
B) Remember results we have seen.
C) Calculate if two graph components are connected using DFS
D) Traumatize the students

Problem 7

Which of the following has the highest growth rate as n becomes very large?
A) 2^{n}
B) n^{2}
C) $n \log n$
D) n

Problem 8

Which of the following list comprehensions generates $[0,1,4,9,16]$?
A) $[x * x$ for x in range(6)]
B) $[x$ ** 2 for x in range(5)]
C) [x for x in range(1, 6) if x ** 2]
D) [x for x in range(5) ** 2]

Problem 9

What will be printed after running the following code? Write your answers for each case.

```
a = "Hello"
b = "AddisCoder"
a = a + a
print(a) # Printed:
```

\qquad

```
b = b[4:]
print(b) # Printed:
```

\qquad

```
a = a + b
print(a) # Printed:
```

\qquad

Problem 10

a) Write a function lucky (n) that takes an integer n and does the following:

- If n is less than 1 or greater than 100, print "Invalid input"
- If n is contains the digit 7 once (eg 7, 17, $87,70,75$ etc), print "LUCKY!"
- If n has 7 in both digits (ie 77), print "DOUBLE LUCKY!"
- In all other cases, print the number n itself

Example:

lucky(17) prints LUCKY!
lucky(51) prints 51
lucky(7) prints LUCKY!
lucky(0) prints Invalid input

In []:
b) Write a program that runs lucky() on numbers from 50 to 100 inclusive.

In []:

Problem 11

What is the runtime complexity of the following functions? Assume that n is a positive integer.

```
In [ ]: def fun1(n):
    i = 0
    while i < n:
        print(i)
        i += 1
In [ ]:
In [ ]: def fun2(n):
    i = 0
    while 2**i < n:
        print(i)
        i += 1
In [ ]:
In [ ]: def fun3(n):
    i = 0
    while i < 10000:
        print(i)
            i += 1
In [ ]:
In [ ]: def fun4(n):
    i = 1
    while i < n:
        print(i)
        i *= 2
In [ ]:
In [ ]: def fun5(n):
    i = 0
    while i < n**2:
        print(i)
        i += 1
In [ ]:
```


Problem 12

Consider the following function (Hint: read the code carefully):

```
def find(lst, elem):
        for i in range(len(lst)):
            if lst[i] == elem:
                return i
            else:
                return -1
```

What is the output of print(find($[1,2,3,4], 2))$?

In []:

Problem 13

a) Write a function is_sorted(lst) which returns True if lst is sorted (from small to large), and False otherwise. Your function should run in $O(n)$ where n is the length of the list.

Hint: You should NOT implement and NOT use any sorting algorithms.

Example:

is_sorted([5,1,2,4,3]) returns False
is_sorted([1,1,2,2,3,3,10,100]) returns True

In []:

Problem 14

Compare these two implementations of factorial() for positive numbers:

```
1. Non-memoized version
```

```
def factorial(n):
```

def factorial(n):
if n == 1:
if n == 1:
return 1
return 1
return n * factorial(n-1)

```
    return n * factorial(n-1)
```

 2. Memoized version
 def memo_factorial(n, mem):
if $n==1$:
return 1
if mem[n] != -1:
return mem[n]
else:
answer $=\mathrm{n} *$ memo_factorial(n-1, mem)
mem[n] = answer
return answer
def factorial_main(n):
mem $=$ [-1]*(n+1)
return memo_factorial(n, mem)
a) How many times is memo_factorial() called when computing factorial_main(x) for an integer $x>0$?

In []:
b) How many times is factorial() called when computing factorial(x) for an integer $x>0$?

In []:
c) Is the memoized version faster than the non-memo version?

In []: \square

Problem 15

Consider the function f defined recursively as the following, and m and n are positive integers
$f(m, n)=f(m-1, n)+f(m, n-1)$ and
$f(0, n)=f(m, 0)=1$ for $m, n \geq 0$.
Implement this function in python, and add memoization to speed up its computation.

In []:

Problem 16

Look at this program:

```
cache = [-1, -1, -1, -1, -1, -1, -1, -1]
def calculate(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    elif cache[n] > -1:
        return cache[n]
    else:
        answer = calculate(n-1) + calculate(n-2)
        cache[n] = answer
        return answer
```

calculate(5)

What is the value of cache after this program runs? (Hint: Draw the call tree on paper. Which numbers were calculate called on?)

Problem 17

The snake graph on n nodes is a graph where node i is connected to node $i+1$ for $0 \leq i \leq n-2$. Example for $\mathrm{n}=4$:

Write a function snake_graph(n) which returns the snake graph on n nodes in as an adjacency dictionary.

Example: snake_graph(4) should return \{0: [1], 1: [2], 2: [3], 3: []\}

In []:

Problem 18

Write a function count_paths (G, a, b) that returns the number of paths from a to b in the graph G. G is given as an adjacency dictionary, and has no cycles (which means there are no paths with repeated nodes).

Example: For the graph above, count_paths (G, 0, 4) should return 6, because there are 6 paths from 0 to 4:

- 0 -> 1 -> 2 -> 3 -> 4
- 0 -> 1 -> 2 -> 4
- 0 -> 1 -> 3 -> 4
- 0 -> 1 -> 4
- 0 -> 2 -> 3 -> 4
- 0 -> 2 -> 4

Hint: To get the count_paths(G, a, b) (the number of paths from a to b), use recursion assuming you know count_paths (G, x, b) (the number of paths from x to b) for all neighbors x of a !

For example, from 0, you have to go to either 1 or 2 first, so count_paths(G, 0, $4)=$ count_paths $(G, 1,4)+$ count_paths $(G, 2,4)$.

Problem 19

Write a function consecutive_as(s) that takes a string s and determines the length of the longest sequence of consecutive lowercase "a" 's within the string.

Example:

- consecutive_as("aabctqaaapwaaaabbbrpq") should return 4.
- consecutive_as("bcdefg") should return 0.

In []:
b) What is the time complexity of your solution if s is of length n ?

In []:

Problem 20

You're given a list lst of length n, which contains the integers from 0 to n inclusive on both ends, with one number missing.
a) Write a function missing (lst) which finds the missing number.

Example:

- missing([4, 0, 1, 5, 2]) should return 3
- missing([1, 0]) should return 2

In []:
b) What is the time complexity of your solution if lst is of length n ?

In []:

