
Addis Coder 2023 Quiz 4

Problem 1

What is the output of bool(0.0) ?

A) True

B) False

C) 0.0

D) 1.0

Problem 2

How do you get the last element of a list lst ?

A) lst[-1]

B) lst(-1)

C) lst[len(lst)]

D) lst(len[lst])

Problem 3

What happens when this function is called with printNumbers(5) ? (Hint: look at the

syntax carefully!)

def printNumbers(number):
 for i in range(len(number)):
 print(i)

printNumbers(5)
A) All numbers from 1 to 5 are printed.

B) All numbers from 0 to 4 are printed.

C) Infinite loop. The code runs but does not terminate.

D) Error. The code does not run at all.

Problem 4

What will the following recursive function return for f(5) ?

def f(n):
 if n == 0:
 return 0
 else:
 return n + f(n-1)
A) 10

B) 15

C) 5

D) 25

Problem 5

Which statement about binary search is false?

A) It is more efficient than linear search for large datasets.

B) The list must be sorted before performing a binary search.

C) Binary search starts searching from the middle of the list.

D) Binary search is the fastest way of finding an item in a dictionary.

Problem 6

In dynamic programming, the memoization table is used to:

A) Count the number of operations taken.

B) Remember results we have seen.

C) Calculate if two graph components are connected using DFS

D) Traumatize the students

Problem 7

Which of the following has the highest growth rate as becomes very large?

A)

B)

C)

D)

Problem 8

Which of the following list comprehensions generates [0, 1, 4, 9, 16] ?

A) [x * x for x in range(6)]

B) [x ** 2 for x in range(5)]

C) [x for x in range(1, 6) if x ** 2]

D) [x for x in range(5) ** 2]

Problem 9

What will be printed after running the following code? Write your answers for each case.

a = "Hello"
b = "AddisCoder"
a = a + a
print(a) # Printed: ________________________
b = b[4:]
print(b) # Printed: ________________________
a = a + b
print(a) # Printed: ________________________

n

2n

n2

n log n

n

Problem 10

a) Write a function lucky(n) that takes an integer n and does the following:

If n is less than 1 or greater than 100, print "Invalid input"
If n is contains the digit 7 once (eg 7 , 17 , 87 , 70 , 75 etc), print "LUCKY!"
If n has 7 in both digits (ie 77), print "DOUBLE LUCKY!"
In all other cases, print the number n itself

Example:

lucky(17) prints LUCKY!

lucky(51) prints 51

lucky(7) prints LUCKY!

lucky(0) prints Invalid input

b) Write a program that runs lucky() on numbers from 50 to 100 inclusive.

In []:

In []:

Problem 11

What is the runtime complexity of the following functions? Assume that n is a positive

integer.

def fun1(n):
 i = 0
 while i < n:
 print(i)
 i += 1

def fun2(n):
 i = 0
 while 2**i < n:
 print(i)
 i += 1

def fun3(n):
 i = 0
 while i < 10000:
 print(i)
 i += 1

def fun4(n):
 i = 1
 while i < n:
 print(i)
 i *= 2

def fun5(n):
 i = 0
 while i < n**2:
 print(i)
 i += 1

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

Problem 12

Consider the following function (Hint: read the code carefully):

def find(lst, elem):
 for i in range(len(lst)):
 if lst[i] == elem:
 return i
 else:
 return -1
What is the output of print(find([1,2,3,4], 2)) ?

Problem 13

a) Write a function is_sorted(lst) which returns True if lst is sorted (from

small to large), and False otherwise. Your function should run in where n is the

length of the list.

Hint: You should NOT implement and NOT use any sorting algorithms.

Example:

is_sorted([5,1,2,4,3]) returns False

is_sorted([1,1,2,2,3,3,10,100]) returns True

In []:

O(n)

In []:

Problem 14

Compare these two implementations of factorial() for positive numbers:

�. Non-memoized version

def factorial(n):
 if n == 1:
 return 1
 return n * factorial(n-1)

�. Memoized version

def memo_factorial(n, mem):
 if n == 1:
 return 1
 if mem[n] != -1:
 return mem[n]
 else:
 answer = n * memo_factorial(n-1, mem)
 mem[n] = answer
 return answer

def factorial_main(n):
 mem = [-1]*(n+1)
 return memo_factorial(n, mem)

a) How many times is memo_factorial() called when computing

factorial_main(x) for an integer ?

b) How many times is factorial() called when computing factorial(x) for an

integer ?

c) Is the memoized version faster than the non-memo version?

x > 0

In []:

x > 0

In []:

In []:

Problem 15

Consider the function f defined recursively as the following, and m and n are

positive integers

f(m, n) = f(m-1, n) + f(m, n-1) and

f(0, n) = f(m, 0) = 1 for .

Implement this function in python, and add memoization to speed up its computation.

Problem 16

Look at this program:

cache = [-1, -1, -1, -1, -1, -1, -1, -1]
def calculate(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 elif cache[n] > -1:
 return cache[n]
 else:
 answer = calculate(n-1) + calculate(n-2)
 cache[n] = answer
 return answer
calculate(5)
What is the value of cache after this program runs? (Hint: Draw the call tree on

paper. Which numbers were calculate called on?)

m, n ≥ 0

In []:

In []:

Problem 17

The snake graph on n nodes is a graph where node i is connected to node i+1 for

. Example for n=4 :

Write a function snake_graph(n) which returns the snake graph on n nodes in as

an adjacency dictionary.

Example: snake_graph(4) should return {0: [1], 1: [2], 2: [3], 3: []}

0 ≤ i ≤ n − 2

In []:

Problem 18

Write a function count_paths(G, a, b) that returns the number of paths from a
to b in the graph G . G is given as an adjacency dictionary, and has no cycles

(which means there are no paths with repeated nodes).

Example: For the graph above, count_paths(G, 0, 4) should return 6, because

there are 6 paths from 0 to 4:

0 -> 1 -> 2 -> 3 -> 4

0 -> 1 -> 2 -> 4

0 -> 1 -> 3 -> 4

0 -> 1 -> 4

0 -> 2 -> 3 -> 4

0 -> 2 -> 4

Hint: To get the count_paths(G, a, b) (the number of paths from a to b), use
recursion assuming you know count_paths(G, x, b) (the number of paths from

x to b) for all neighbors x of a !

For example, from 0 , you have to go to either 1 or 2 first, so count_paths(G, 0,
4) = count_paths(G, 1, 4) + count_paths(G, 2, 4) .

In []:

Problem 19

Write a function consecutive_as(s) that takes a string s and determines the

length of the longest sequence of consecutive lowercase "a" 's within the string.

Example:

consecutive_as("aabctqaaapwaaaabbbrpq") should return 4 .
consecutive_as("bcdefg") should return 0 .

b) What is the time complexity of your solution if s is of length n ?

In []:

In []:

Problem 20

You're given a list lst of length n , which contains the integers from 0 to n
inclusive on both ends, with one number missing.

a) Write a function missing(lst) which finds the missing number.

Example:

missing([4, 0, 1, 5, 2]) should return 3
missing([1, 0]) should return 2

b) What is the time complexity of your solution if lst is of length n ?

In []:

In []:

