
Addis Coder Quiz 3

Problem 1

Which of the following describe useful criteria for comparing the efficiency of algorithms?

a) Time complexity

b) Memory complexity

c) Both of the above

Problem 2

What is the time compexity of the following code given below?

a)

b)

c)

d)

Problem 3

How is time complexity measured?

a) By counting the total number of loops in a program.

b) By counting the number of primitive operations performed by the algorithm on a given

input size.

c) By counting the size of data input to the algorithm.

d) By counting the number of lines of code in a program.

Problem 4

In []: #Given code

value = 0
for i in range(n):
 for j in range(i):
 value += 1

O(1)

O(n)

O(n2)

O(log n)

What is the time complexity of the following code? ConstFun(n) has constant time

compexity.

a)

b)

c)

d)

Problem 5

What is the time complexity of the following code? LinearFun(n) has linear time compexity

and ConstFun(n) has constant time complexity.

a)

b)

c)

d)

Problem 6

Which of the following functions has the highest time complexity for large 'n'?

a)

b)

c)

d)

In []: summ = 1
for i in range(n):
 ConstFun(n)
 summ += i
print(summ)

O(1)

O(n)

O(n2)

O(log n)

In []: number_string = ''
for i in range(n):
 ConstFun(n)
 number_string += str(i)
 LinearFun(n)
 number_string += ' '

print(number_string)

O(1)

O(n)

O(n2)

O(log n)

5n + 10

4n2 + 6n + 14

10n

n4 + n2 + n

Problem 7

Write out the Big-O time complexity for all the options in Problem 6.

a)

b)

c)

d)

Problem 8

What is the running time of the following code in terms of n?

a)

b)

c)

d0

Problem 9

Choose the best answer for the following questions?

I) Which sorting algorithm typically has the best time complexity for large datasets?

a) Bubble Sort

b) Selection Sort

c) Merge Sort

d) Insertion Sort

II) In which scenario is Bubble Sort the most efficient?

a) When the list is already sorted in correct order

In []: y = 100

for i in range(n):
 for k in range(n):
 for j in range(5):
 y //= 2

O(log(n))

O(n2)

O(n2 log(n))

O(n3)

b) When the list is sorted in opposite order

c) When the list contains a large number of elements

Problem 10

Suppose we want to implement a function foo(x, L) in which L is sorted. This function

should return True if x is in L and return False otherwise. x is an int and L is a

list of ints.

For instance foo(2, [0,2,6]) should return True.

Consider the following code:

KeyboardInterrupt

What error might the following code give if run? Hint: what happens if you run foo(1,
[0]) ?

A. maximum recursion depth exceeded

B. index out of range error

C. No error will be printed by Python, the code is correct.

D. No error will be printed by Python, but there is a mistake in the code so sometimes it

gives the wrong answer.

Problem 11

What is the time complexity of the Search(x, L, 0, len(L)) function in Problem 10

if L is a sorted list of length n and x is in L ?

In []: # check if x is in L[A:B]
def Search(x, L, A, B):
 if B < A+1:
 return False
 else:
 mid = (A+B)//2
 if L[mid] == x:
 return True
 elif L[mid] > x:
 return Search(x, L, A, mid)
 else:
 return Search(x, L, mid, B)

def foo(x, L):
 return Search(x, L, 0, len(L))

foo(1,[0])

Problem 12

Write a function that takes a list of integers and returns the position (index) of the number

34 or -1 if 34 is not part of the list.

for example: if L=[5,67,34] , it would return 2 and if L=[23,33,89,-34] it would

return -1.

Problem 13

Write a function that takes an unsorted list L and returns L sorted in descending order.

For example, if you give the function the list L= [34,-3,98,-100] , Sorting(L,n) would
return [98,34,-3,-100]

Problem 14

As a Teff trader, you want to buy Teff for a low price and later sell it at a high price. You

can only buy and sell one time.

For example, if you have prices = [1200, 1300, 1100, 900, 1100, 1000,
1150] , the best strategy is to buy when the price is 900 and sell when the price is

1150 , for a profit of 1150-900 = 250 .

Write a function that takes a list of Teff prices and returns the highest profit you can

make.

In []:

In []: def find_34(L):

In []: def SortingDescending(L):

In []: def highest_profit(prices):

Problem 15

a) Draw the following graph: {0: [1, 3], 1: [0, 2], 2: [0], 3: [1]}

b) What is the list of edges of this graph?

Problem 16

a) Are the following two graphs the same? (Hint: two graphs are the same if their list of

edges is the same.)

b) Which of the following graphs are the same?

In []:

In []:

Problem 17

Write a function neighbors(G, s) that takes a graph G as list of edges and a node

s , find all out-neighbors (successors) of s .

Example: For the graph G = [[2, 0], [0, 1], [2, 3], [1, 3], [4, 1], [2,
4], [1, 2]] , neighbors(G, 2) should return [0, 3, 4] .

Problem 18

Note: 1 bonus point for this problem if you can find an solution.

In the list [2, 1, 4, 7, 3, 5] , the elements 2 , 4 and 7 are bigger than all

previous elements: 4 > 2 and 4 > 1 ; 7 > 2 and 7 > 1 and 7 > 4 .

a) Write a function elimination_sort(lst) that takes a list lst and returns a new

list containing those elements bigger than all previous elements.

Examples:

elimination_sort([2, 1, 4, 7, 3, 5]) should return [2, 4, 7]
elimination_sort([1, 6, 5, 4, 7, 9]) should return [1, 6, 7, 9]

b) What is the time complexity of your algorithm, if is the length of lst ?

In []:

In []:

O(n)

In []:

n

In []:

