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Lab 5

Exercise 1: Find simple functions f (like n, or n5, or n log2 n) for each of the functions below
so that they are Θ(f). For the recurrences T below, assume T (n) = 1 for n ≤ 2, and otherwise
satisfies the recurrence given.

• n3

n3

• .5n3

n3

• 10n7

n7

•
∑n

i=0 i
2

n3. This sum is O(n3) since it is at most n · n2 = n3. It is also Ω(n3) since it is at least
(n/2) · (n/2)2 = n3/8.

•
∑n

i=0 i
3

n4. This sum is O(n4) since it is at most n · n3 = n4. It is also Ω(n4) since it is at least
(n/2) · (n/2)3 = n4/16.

•
∑n

i=0

√
i

n3/2. This sum is O(n3/2) since it is at most n ·
√
n = n3/2. It is also Ω(n3/2) since it is at

least (n/2) ·
√
n/2 = n3/2/(2

√
2).

•
∑n

i=1

√
i · log2 i

n3/2 log2 n. This sum is O(n3/2 log2 n) since it is at most n ·
√
n log2 n = n3/2 log2 n. It is also

Ω(n3/2 log2 n) since it is at least (n/2) ·
√

n/2 log2(n/2) = n3/2(log2 n)/(2
√

2)− n3/2/(2
√

2).

• T (n) = T (n− 1) + 5

n. We have T (n) = 5 + 5 + 5 + . . . + 5 + 1, where the number of 5s appearing is n− 2, since
T (2) = 1. So for n ≥ 2, T (n) = 5n− 10 + 1 = Θ(n).

• T (n) = T (n− 2) + 2n

n2. We have T (n) = 2(n + n− 2 + n− 4 + . . . + 4) + 1. So, T (n) ≤ 2n2/2 = O(n2). Also, at
least n/4 terms in the sum are n/2, so T (n) ≥ 2(n/4)(n/2) = Ω(n2). So, T (n) = Θ(n2).

• T (n) = T (
√
n) + 1
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log2 log2 n. The number of recursive steps in computing T (n) before we get down to n = 2 is

the k such that (((n1/2)1/2)···)1/2 (k times) is at most 2. Thus, we want n1/2k ≤ 2. Rearranging
gives k ≥ log2 log2 n.

• T (n) = 2T (n/2) + log2 n

n. If one draws the recursion tree for T (n) as we did in class, then the bottom level (let’s
call it level 1) has n/2 leaves that each contribute 1 to T (n). Going up the levels of the tree,
we see that the kth level contributes (n/2k) · k (there are n/2k nodes, each contributing k).
Thus, T (n) is at most

∑∞
k=1(n/2k) · k = n ·

∑∞
k=1 k/2k = O(n). It is also Ω(n) since level 1

alone already contributes n/2.

Exercise 2: Recall the Fibonacci recurrence

fib(n) =

{
1 if n = 0 or n = 1

fib(n− 1) + fib(n− 2) otherwise
.

Find a value c so that fib(n) ≤ cn. Prove that this is so using induction.

Solution: c = (1 +
√

5)/2. For the base case with n = 0, we want fib(0) ≤ c0. This would be
true for any c > 0 since c0 = fib(0) = 1. It would also be true for n = 1 as long as c ≥ 1. Now for
the inductive case for n > 1, we assume fib(j) ≤ cj for j = 0, 1, . . . , n − 1 and want to show that
it’s true for j = n.

Well, we have fib(n) = fib(n − 1) + fib(n − 2) ≤ cn−1 + cn−2. We want cn−1 + cn−2 ≥ cn to
make our inductive hypothesis go through. So, let’s find a c so that cn−1 + cn−2 = cn. Dividing
through by cn−2 and rearranging, we have c2 − c − 1 = 0. Solving this quadratic equation gives
c = (1 +

√
5)/2. Note that our simple recursive algorithm for computing fib(n) took fib(n) steps,

so its running time is also Θ(((1 +
√

5)/2)n).

Exercise 3: Show by induction that every integer 2 or greater is a product of primes.

Solution: We show by induction the claim that every integer n ≥ 2 is a product of primes.

• Base case: The claim is true for n = 2 since 2 = 2.

• Inductive step: We suppose the claim is true for 0, 1, . . . , n − 1 and want to show it for
some n ≥ 3. If n is prime, then we can write n = n and are done. Otherwise, if n isn’t prime,
that means we can write n = m · r for some integers 1 < m, r < n. By our inductive step
since m, r < n, we can write m as a product of primes m = p1 · · · px and r as a product of
primes r = q1 · · · qy, so we can write n as a product of primes as well n = p1 · · · pxq1 · · · qy.

Exercise 4: Suppose a country only has 3-cent and 5-cent coins. Show by induction that you
can make change for any monetary value which is at least 8 cents.
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Solution: Our claim is that we can make change for n cents as long as n ≥ 8.

• Base cases: For n = 8, 9, or 10 we can make change as 8 = 3 + 5, 9 = 3 + 3 + 3, 10 = 5 + 5.

• Inductive step: For n ≥ 11 we can assume that it’s true for 8, 9, . . . , n − 1. Then we can
make change for n cents by making change for n− 3 cents then adding in a 3-cent coin.

Exercise 5: Show by induction that 12 + 22 + · · ·+ n2 = n(n + 1)(2n + 1)/6.

Solution: Our claim is that
∑n

j=1 j
2 = n(n + 1)(2n + 1)/6.

• Base case: This is true for n = 1 since 12 = 1(1 + 1)(2 · 1 + 1)/6.

• Inductive step: For n ≥ 2 we can assume that it’s true for 1, . . . , n − 1. Now, we have
12 + . . . + n2 = (12 + . . . + (n − 1)2) + n2. For the first part of the sum in parentheses, we
have by the inductive step that it equals (n − 1)n(2(n − 1) + 1)/6. We then have the extra
n2 term. Adding (n− 1)n(2(n− 1) + 1)/6 + n2 gives n(n + 1)(2n + 1)/6.

Exercise 6: A robot starts off in an infinite grid of cells, at the location (0, 0). At each time step
he can move diagonally to the topleft, topright, bottomleft, or bottomright (see the picture below).

Can the robot ever reach the cell (0,1)? Either show a way he can, or show that he can’t using
induction.

Solution: The robot cannot ever reach (0,1). This is because of the robot’s coordinates are (x, y),
then we always have that x + y is even.

We prove the following claim inductively: for all points in time n, the robot’s location (x, y) at
time n satisfies that x + y is even.

• Base case: This is true at time step 0 since his location is (0, 0) which has 0 + 0 = 0 even.

• Inductive step: For n ≥ 1 we can assume that it’s true for 0, . . . , n− 1. Now, suppose his
location at time step n − 1 is (x, y). We assume x + y is even. Then in the next step his
location will either be (x − 1, y − 1), (x + 1, y − 1), (x + 1, y + 1), or (x + 1, y − 1). In any
case, the sum of his new coordinates will either be x+ y, x+ y− 2, or x+ y + 2. All of these
are even since x + y is even.
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