Addis Ababa University, Amist Kilo July 6, 2011
Algorithms and Programming for High Schoolers
Lab 3
Exercise 1: Consider the Trionacci sequence defined as follows.
T - 1 ifi=0o0ori=1lori=2
L Ti 1 +T;_o+T;_3 otherwise
Implement a function trionacci(n) which returns the nth Trionacci number.
Example solution:
def trionacci(n):
if n<3:
return 1
else:
return trionacci(n-1) + triomnacci(n-2) + trionacci(n-3)
Exercise 2: The factorialof nisn!=1-2-...-n (we define 0! = 1). Implement factorial(n)

in two ways: one using a while loop, and the other using recursion.

Example solution:

using a while loop
def factorial(n):

ans = 1

x =1

while x <= n:
ans *= X
x +=1

return ans

using recursion
def factorial(n):
if n==0:
return 1
else:
return n*factorial(n-1)

Exercise 3: Last lab we had the following exercise:

An integer is said to be a palindrome if its digits are the same forward and backwards (not
including leading zeroes). For example, 12321 is a palindrome, as is 5. 1231 on the other hand
is not a palindrome, and neither is 50 (remember we are not including leading zeroes). Write a
function isPalindrome(n) which returns True if n is a palindrome and False otherwise.

In today’s lab, implement isPalindrome using recursion. Specifically, check if the first and last

characters are equal, and recurse on the middle substring if required.

Example solution:

def isPalindrome(s):
if len(s) < 2:
return True
return s[0]==s[len(s)-1] and isPalindrome(s[1:len(s)-1])

Exercise 4: Define a function flooredSquareRoot(n) which takes a positive int or long n and
computes its square root, rounded down to the nearest integer. Python has a buit-in sqrt function
which could be helpful here, but don’t use it.

Do two implementations. In the first, use a while loop starting from 0 and going upward. Call
that function slowFlooredSquareRoot(n). Next, implement flooredSquareRoot(n) using binary
search. Experiment by evaluating these functions on various inputs. Try n being a billion — notice
a difference in the time it takes to compute the answer?

Example solution:

def slowFlooredSquareRoot(n):

x =0
while x*x <= n:
x +=1

return x-1

we assume the floored square root is in the interval [a,b]
def flooredSquareRootHelper(a, b, n):
mid = (at+b+1)/2
if a==b:
return a
elif mid*mid == n:
return mid
elif mid*mid < n:
return flooredSquareRootHelper (mid, b, n)
else:
return flooredSquareRootHelper(a, mid-1, n)

def flooredSquareRoot(n):
return flooredSquareRootHelper(0, n, n)

Exercise 5: Implement a function calcNthSmallest(n, intervals) which takes as input a non-
negative int n, and a list of intervals [[a1,b1], ..., [am, bn]] and calculates the nth smallest number
(0-indexed) when taking the union of all the intervals with repetition. For example, if the intervals
were [1,5],[2,4],[7,9], their union with repetition would be {1,2,2,3,3,4,4,5,7,8,9} (note 2,3,4
each appear twice since they’re in both the intervals [1, 5] and [2,4]). For this list of intervals, the
Oth smallest number would be 1, and the 3rd and 4th smallest would both be 3.

Your implementation should run quickly even when the a;, b; can be very large (like, one trillion),
and there are several intervals.

Example solution: First, here are some helper functions which will be useful.

compute the index of the first time x appears in the union of intervals
def firstTime(x, intervals):
answer = 0
for L in intervals:
if x > L[1]:
answer += L[1] - L[0] + 1
elif x > L[0]:
answer += x - L[O]
return answer

compute the index of the last time x appears in the union of intervals
def lastTime(x, intervals):
answer = 0
for L in intervals:
if x >= L[1]:
answer += L[1] - L[0] + 1
elif x >= L[0]:
answer += x - L[0] + 1
return answer-1

Now, here is a slow implementation of calcNthSmallest(n, intervals) (at least, it is slow when
the intervals can be very long).

def calcNthSmallest(n, intervals):
for L in intervals:
for x in xrange(L[0], L[1]+1):
first = firstTime(x, intervals)
last = lastTime(x, intervals)
if first<=n and n<=last:
return x

The reason it is slow for long intervals is that we loop over the entire range from L[0] to L[1]+1.
To make this faster, we can use a binary search over the interval [L[0], L[1]].

Binary searches for the nth smallest number being in the interval
[a,b]. If no such number in [a,b] is found, [False, ‘’] is returned.
Otherwise, [True, x] is returned, where x is the nth smallest
number.
def binarySearch(a, b, n, intervals):

if a>b:

return [False, ‘’]

mid = (a+b)/2

first = firstTime(mid, intervals)

last = lastTime(mid, intervals)

if first<=n and n<=last:

return [True, mid]
elif first>n:

return binarySearch(a, mid-1, n, intervals)
else:

return binarySearch(mid+1, b, n, intervals)

def calcNthSmallest(n, intervals):
The answer has to be in one of the intervals, so try them all in
a for loop.
for L in intervals:
answer = binarySearch(L[0], L[1], n, intervals)
if answer[0]:
return answer[1]

