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Lecture 9

Greedy Algorithms: A greedy algorithm is one that when optimizing a function over
some input, iteratively makes decisions by picking the decision that looks best at the moment. For
example, when making change for n cents using coin denominations from the list L and trying to
use as few coins as possible, we could keep picking the largest coin which is at most n cents until
we’ve finally made change. Thus, even though overall the function we’re trying to minimize is the
total number of coins used, we at each step consider the biggest coin possible to be the best choice.

Sometimes greedy algorithms can provably produce optimal solutions, such as this example with
US or Ethiopian currency (but as we saw earlier, this isn’t always the case, e.g. making change
for 8 cents with coin denominations {1,4,5}). Now we’ll study a few more examples where greedy
algorithms produce optimal solutions.

Hitting Intervals: Consider the following problem. The input is a list L of intervals, L = [[a1, b1],
[ag,ba], ..., [an,by]]. These intervals might overlap. We would like to produce as small a set of
numbers as possible so that each interval in the input contains at least one number in our set (in
this case we say that each interval is hit). For example if the intervals were [[1,5], [3,7]], then
producing the set {2,6} would hit both intervals, however the solution {4} is better since it also
hits both intervals and is a smaller set.

We first make one simple observation, which is that in the set we produce in the end, we only
need to consider including numbers which are the right endpoint of some interval (proof: in any
optimal solution, take each number in the set and keep increasing it until it is the right endpoint
of some interval). Next, we also make the observation that if we only include right endpoints of
intervals, then we must include the right endpoint of the interval with the smallest b;, since that is
the only way to hit that interval.

After the previous observations, we can develop an efficient algorithm for this problem via
memoization. First sort L so that by < by < ... <b,. Let f(at,last) be the minimum size of a set
required to hit the intervals L[at],L[at+1],...,L[n] given that the last number we included in our
set was L[last][1]. Then the optimal solution has value 1+ f(1,0), since we have to include b; in
our solution. In Python code:

def f(L, at, last, mem):
if at == len(L):
return O
elif mem[at] [last] != -1:
return mem[at] [last]
# include this interval’s right endpoint in the output
mem[at] [last] = 1 + £f(L, at+1, at, mem)
if L[last][1]1>=L[at][0] and L[last][1]<=L[at][1]:
# don’t include this interval’s right endpoint in the output
# but need to make sure this interval was already hit
mem[at] [last] = min(mem[at] [last], f(L, at+1l, last, mem))
return mem[at] [1last]



def optimalHitting(L):
# sort the list of intervals by their second coordinate
for ¢ in L:

c[0],c[1] = c[1],c[O]
L.sort()
for ¢ in L:

c[0],c[1] = c[1],c[0]
mem = []

for i in xrange(len(L)):

mem += [[-1]*len(L)]
answer = 1 + £f(L, 1, 0, mem)
return answer

Sorting L in the beginning takes O(nlogn) time via mergeSort. There are n+ 1 choices for at
and n choices for last. The amount of work to fill in any particular entry of mem is O(1), so in
total the running time of the above implementation is O(n?).

By making one more observation, we can obtain an even faster greedy algorithm that runs
in only O(nlogn) time. First, what is the proposed greedy algorithm? We first sort L so that
by < by <...< by, taking O(nlogn) time. We include by in our solution then remove all intervals
that have been hit to obtain a new list. Then we again include the smallest b; remaining in our
solution, and again remove all the intervals that are hit. We keep doing this until everything has
been hit. In Python:

def optimalHitting(L):
for ¢ in L:

c[0],c[1] = c[1],c[0]
L.sort()
for ¢ in L:

c[0],cl1] = c[1],c[o]
ans = 1

last = L[0][1]
for x in L[1:]:
if last>=x[0] and last<=x[1]:

continue
else:

ans += 1

last = x[1]

return ans

Why does this produce the smallest output set possible? Well, as argued previously we can
assume that our output set only contains right endpoints of intervals and must contain b;. Now in
our algorithm, we skip several intervals that are hit until we reach the first interval b; which is not
hit, and we include it. Suppose we had an optimal solution which actually took one or more of the
b;’s that we skipped. We could take that solution, remove all such b;’s and replace them with b;,



and we would have a new solution that is just as good or better and still hits every interval. By
continuing in this way down the list, we can transform any solution into the greedy one in such a
way that it can only improve.



