
Addis Ababa University, Amist Kilo July 12, 2011
Algorithms and Programming for High Schoolers

Lecture 7

More recursion/memoization examples:

Example 1: Let numWays(n) be the number of ways to write a nonnegative integer n as the sum
of positive integers. For example, there are 8 ways of writing 4: 1 + 1 + 1 + 1, 2 + 1 + 1, 1 + 2 + 1,
1 + 1 + 2, 2 + 2, 1 + 3, 3 + 1, and 4. One can show by induction that numWays(n) = 2n−1, but let’s
see how to calculate it using recursion and memoization.

Recursive implementation without memoization:

def numWays(n):

if n==0:

return 1

ans = 0

for i in xrange(1, n+1):

ans += numWays(n-i)

return ans

Recursive implementation with memoization:

def memNumWays(n, mem):

if n==0:

return 1

elif mem[n] != -1:

return mem[n]

mem[n] = 0

for i in xrange(1, n+1):

mem[n] += memNumWays(n-i, mem)

return mem[n]

def numWays(n):

mem = [-1]*(n+1)

return memNumWays(n, mem)

Example 2: What if we want to compute a function distinctNumWays(n) which doesn’t differ-
entiate between different orderings of the same sum? For example, it treats 1 + 1 + 2 and 2 + 1 + 1
as the same sum. So, there would only be 5 ways to sum up to the number 4: 1+1+1+1, 1+2+2,
2 + 2, 1 + 3, 4.

We can calculate distinctNumWays(n) recursively as well, by generating all ways of forming
n where the integers in the sum are generating in nondecreasing order. That is, we would not
generate 2 + 1 + 1 or 1 + 2 + 1 since the integers do not appear in nondecreasing order; we would
only generate 1 + 1 + 2. That way, we never count each sum exactly once.

1

Recursive implementation without memoization:

how many ways are there to sum up to n, not counting different

orderings of the sum, when the smallest number must be at least

atLeast

def recurse(n, atLeast):

if n==0:

return 1

ans = 0

for i in xrange(atLeast, n+1):

ans += recurse(n-i, i)

return ans

def distinctNumWays(n):

return recurse(n, 1)

Recursive implementation with memoization:

def recurse(n, atLeast, mem):

if n==0:

return 1

elif mem[n][atLeast] != -1:

return mem[n][atLeast]

mem[n][atLeast] = 0

for i in xrange(atLeast, n+1):

mem[n][atLeast] += recurse(n-i, i, mem)

return mem[n][atLeast]

def distinctNumWays(n):

mem = [[-1]*(n+1)]*(n+1)

for i in xrange(n+1):

x = []

for j in xrange(n+1):

x += [-1]

mem += [x]

return recurse(n, 1, mem)

2

