Addis Ababa University, Amist Kilo July 8, 2011
Algorithms and Programming for High Schoolers

Lecture 5

This class is mostly concerned with algorithms. So, what is an algorithm? An algorithm is a
well-defined computational procedure that takes some data as input and computes new data for
output. For example, an algorithm for multiplying integers takes two integers as input and outputs
their product. An algorithm for sorting a list of numbers takes a list of numbers as input then
outputs a list with the same numbers, but in sorted order.

Analysis of Algorithms: It is often the case that there are many different algorithms
which accomplish the same task, and we must choose which one to use. For example, yesterday we
saw four different algorithms to accomplish the task of sorting (selectionSort, insertionSort,
bubbleSort, and mergeSort).

Order of growth: The most popular way of expressing the running time of an algorithm is
by expressing how well it scales as the input size gets larger and larger. Also, to have absolute
guarantees, we measure the running time of an algorithm in the worst case over all inputs of a given
size. Running any one of selectionSort, bubbleSort, and insertionSort, on the list [n,n-1,n-
2,...,1] takes roughly Cyn? steps for some constant Cj. Meanwhile, it is possible to show that no
input can cause mergeSort to take more than roughly Canlogy n steps for some constant Cy. No
matter how C, Cy are related, when n gets large enough, mergeSort is the superior choice.

The notation that has become the convention for measuring algorithm running times is the big-
Oh notation. big-Oh is a way of relating two functions f(z), g(z) (we would either write “f(z) is
big-Oh of g(x)”, or “f(z) = O(g(z))”; often we don’t write the x and it is understood). The precise
mathematical definition of big-Oh is as follows, though roughly you should think of f = O(g) as
meaning f does not grow faster than g. You can think of big-Oh as being a kind of “less than or
equal to” for functions.

Definition 1. Let R denote the real numbers, and let f,g : R — R be two nonnegative functions.
We say f is big-Oh of g, or f = O(g), if for some positive numbers C' and N, as long as x > N,

f(z) <C-g(x).

In the analysis of the running time of some algorithm A, we often care about f(n) being a
function that tells us the worst-case running time of A over all inputs of size n.

Just as big-Oh can be seen as a “less than or equal to”, big-Omega can be seen as a “greater
than or equal to”. We say f = Q(g) if f grows at least as fast as g.

Definition 2. For two nonnegative functions f,g : R — R we say f is big-Omega of g, or f = Q(g),
if for some positive numbers C and N, as long as x > N,

[f(@)] = C - |g(z)]-

In other words, f = Q(g) if g = O(f). We say f is Theta of g, or f = ©(g), if f = O(g) and
f=Q(g) simultaneously.

For those of you familiar with limits, the following is helpful:

e f = 0O(g) usually corresponds to lim,_,~ f(z)/g(z) < o0
o f=Q(g) usually corresponds to lim,_,« g(z)/f(z) < 00
e f = 0(g) usually corresponds to lim,_,~ f(x)/g(x) < C for some positive constant C.

The above bullet list is not entirely accurate in the cases that the f or g can be zero, or if f/g
fluctuates in a constant-sized interval (in which case you would have to use mathematical terms
known as the limit superior and limit inferior), but they are good enough approximations to the
truth for anything you’d ever encounter when measuring running times in practice.

Here are some examples of big-Oh:

e n2 =0(n?)
e n? =0(n3)

3n? = O(n?)

5n? = 0(n?)
5n8 + 2n = O(n®)

3nlog;pn = O(nlogyn), since switching bases of log just changes the value by a constant
(loggn = (1/logy 10) - logy n).

Now, when measuring running times of the sorting algorithms, the example [n,n-1,n-2,.../1]
tells us that the running times of selectionSort, bubbleSort, and insertionSort are all Q(n?).
It’s also not too hard to see their worst case running times are all O(n?) (in other words, their
running times are O(n?) on all input lists of size n). For example, in insertionSort, we have a
for loop that takes m iterations, and in each iteration we have a while loop that goes on for at
most n iterations. Thus, these three algorithms all have running times which are ©(n?).

What about mergeSort?

Induction: Before getting to the analysis of mergeSort, we’ll discuss a method of mathematical
proof known as induction.

Induction is a method for showing that some mathematical statement is true for the natural
numbers N, i.e. the nonnegative integers {0, 1,2,...}. To prove a statement by induction, one first
shows that the statement holds for some starting value n = ny (the “base case”), then shows that
if it holds for 1,2,...,n, it must hold for n + 1 (the “inductive step”). Successfully showing the
base case and inductive step together imply that the statement holds for all integers ng,ng +1,. . ..

Consider for example the puzzle given in the flyer for this class, but generalized to n people: n
people enter a room, and everyone shakes everyone else’s hand — how many handshakes are there?
Let’s prove that the answer is n(n — 1)/2, by induction. This is definitely true for the base case
n = 0: if there are 0 people, then there are 0(—1)/2 = 0 handshakes. Now, let’s do the inductive
step. We assume the answer is n(n — 1)/2 for n people, and we show that it is (n 4+ 1)n/2 for
n + 1 people. Label the people as 1,2,...,n 4+ 1. The first n people all have to shake each other’s
hands, so there are n(n — 1)/2 such handshakes. Next, the (n + 1)st guy has to shake all the
other n people’s hands, which contributions an additional n handshakes. So, the total number of
handshakes is n(n —1)/24+n = (n 4 1)n/2, so we have proven our claim for all n > 0.

Recurrences: How does induction fit into analyzing mergeSort? Well, let’s look at the code for
mergeSort again:

def mergeSort(L):
if len(L)<=1:
return L
A = mergeSort(L[:1len(L)/2])
B = mergeSort(L[len(L)/2:]1)
return merge(A, B)

We can write a recurrence that expresses the running time of mergeSort. What is a recurrence?
A recurrence is a definition of a function that expresses its value on an input as some combination
of its values on smaller inputs. For example, our definition of fib(n) as the nth Fibonacci number
in Lecture 3 was a recurrence:

1 ifn=0o0orn=1
fib(n) = .
fib(n — 1) + fib(n — 2) otherwise

Turning back to mergeSort, let T'(n) be the function which denotes the worst-case running time
of mergeSort on any input list of length n. Then, given the code for mergeSort, we see that

1 ifn<1
T(n) = o
2-T(n/2)+C-n otherwise

The C - n term comes from the running time of the merge operation, where C' > 1 is some
constant value. The above recurrence isn’t exactly right since if n is odd we don’t break into
exactly two pieces of size n/2, but to make the presentation simpler let’s assume for now that n is
a power of 2 so that in all recursive steps we always break the input into exact halves.

Now, let’s show by induction that T'(n) < Cnlogyn 4+ n with the base case ng = 1.

e Base case: When n =1, T'(n) = 1. We also have C - 1logy 1+ 1 = 1, so indeed the claim
holds for n = 1.

e Inductive step: We assume the running time for n/2 satisfies T'(n/2) < C(n/2)logy(n/2) +
(n/2). Now, we have from the recurrence that

T(n) <2-(C(n/2)logy(n/2) 4+ (n/2)) + Cn
= Cnlogy(n/2) +n+Cn
= Cnlogyn + n,

since log(a/b) = log(a)—log(b). Thus we have shown the claim. Now note that Cnlogs n+n =
O(nlogyn), so the running time of mergeSort is O(nlogyn). One can similarly also show
that in fact its running time is also Q(nlogyn), so that it is ©(nlogyn). This means that
comparing mergeSort with the other three sorting algorithms from yesterday, mergeSort is
faster by a factor of ©(n/logyn), which is quite large (for example, n/logy n is about 50000
when n is one million).

