
Addis Ababa University, Amist Kilo July 7, 2011
Algorithms and Programming for High Schoolers

Lecture 4

Sorting: This lecture covers sorting. In this problem, we have a list of items (let’s say integers)
and would like to sort them from smallest to biggest. A natural method for sorting, which is
probably what most of us do in real life, is look for the smallest element, put it at the beginning,
then sort what’s left. This is known as selectSort, and here is an implementation in Python:

def selectionSort(L):

if len(L) == 0:

return []

smallest = L[0]

smallestIndex = 0

for i in xrange(1, len(L)):

if L[i] < smallest:

smallest = L[i]

smallestIndex = i

In Python, a,b = b,a swaps the contents of the variables a,b

L[0],L[smallestIndex] = L[smallestIndex],L[0]

return [L[0]] + selectionSort(L[1:])

Another approach to sorting is to gradually make prefixes of the list sorted. That is, first we’ll
make sure L[0:1] is sorted, then L[0:2], etc., all the way up to L[0:len(L)]. The following method is
known as insertionSort.

def insertionSort(L):

for i in xrange(1, len(L)):

We assume L[0:i] is already sorted, and now need to put L[i]

in its rightful place.

j = i - 1

value = L[i]

while j>=0 and L[j]>value:

L[j+1] = L[j]

j -= 1

L[j+1] = value

return L

Another problem sorting method is bubbleSort. This procedure has several iterations. In each
iteration you start at the beginning of the list and move to the end, one item at a time, and for
each item you encounter you swap it with its adjacent element on the right if the two elements are
inverted. This is done repeatedly until there are no more swaps being performed.

def bubbleSort(L):

swapped = True

while swapped:

swapped = False

1

for i in xrange(len(L)-1):

if L[i]>L[i+1]:

L[i],L[i+1] = L[i+1],L[i]

swapped = True

return L

The last sorting method we’ll cover today is mergeSort. This is a recursive procedure for sorting
a list. We break the list in two equal-sized halves (or as equal-sized as possible if the list size is
odd), recursively sort each half, then merge the two lists together.

def mergeSort(L):

if len(L)<=1:

return L

recursively sort the first half of L and put the result in A, and

recursively sort the second half of L and put the result in B

A = mergeSort(L[0:len(L)/2])

B = mergeSort(L[len(L)/2:])

now merge A and B, and put the result in C

C = []

aindex = 0

bindex = 0

for i in xrange(len(L)):

if aindex==len(A):

C += B[bindex:]

break

elif bindex==len(B):

C += A[aindex:]

break

else:

if A[aindex] < B[bindex]:

C += [A[aindex]]

aindex += 1

else:

C += [B[bindex]]

bindex += 1

return C

As we will see in the next lecture, mergeSort is usually the best choice of these four methods
when it comes to algorithm speed.

2

