Addis Ababa University, Amist Kilo July 5, 2011
Algorithms and Programming for High Schoolers

Lecture 2

if Statements: The if statement allows you to only conditionally execute some code block,
conditioned on some expression evaluating to True.

if BOOL_EXPR:
CODE_BLOCK

elif BOOL_EXPR:
CODE_BLOCK

elif BOOL_EXPR:
CODE_BLOCK

else:
CODE_BLOCK

In the above code, exactly one of the code blocks is executed, corresponding to the first
BOOL_EXPR which evaluates to True (or the final code block corresponding to the else in the
case that none of the BOOL_EXPR evaluates to True). The elif and else statements are optional.

Example:

def printSign(n):
if n < O:
print ‘Negative’
elif n > O:
print ‘Positive’

Now, if we were to execute printSign(-1), ‘Negative’ would be printed, and similarly printSign(1)
would print ‘Positive’. Calling printSign(0) would result in nothing being printed.

for Statements: The for statement allows you to iterate over data in Python (for example,
iterating over items in a list, or characters in str).

for var in v:
CODE_BLOCK

The expression v above should evaluate to something iterable.

Example:

fruits = [‘orange’, ‘pineapple’, ‘banana’, ‘mango’]
pluralFruits = []
for x in fruits:

plural = x + ‘s’

pluralFruits += [plurall

The above code segment would cause favoriteFruits to equal [‘oranges’, ‘pineapples’, ‘bananas’,
‘mangos’].

while Statements: The while statement allows you to repeatedly execute a code block as
long as some bool expression evaluates to True.

while BOOL_EXPR:

CODE_BLOCK

Example:

x =[]

y=0

while y < 10:
x += [y]
y+=1

The above code segment would cause x to equal [0, 1, 2, 3,4, 5,6, 7, 8, 9].

break and continue: Sometimes you might want to stop iterating in a for or while
early, or just skip some particular iteration. The break and continue statements are useful for
this. break exits the loop early, and continue moves back to the beginning of the loop.

Example: Both of these code examples print only the odd numbers between 0 and 5.

Example with for loop
myList = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
for x in myList:
if x > 5:
break
elif x%2 == 0:
continue
else:
print x

Example with while loop
x =0
while True:
if x > 5:
break
elif x%2 == 0:
continue
else:
print x
x += 1

Other useful functions: It will be helpful for today’s lab to know the following functions.

e len(x) returns the length of an iterable data type (such as a str or list) as an int. For
example, len(‘abc’) and len([‘a’, ‘b’, ‘c’]) both evaluate to 3. len([‘a’, ['D’, ‘¢’, ‘d’]]) evaluates
to 2.

e range(x) returns a list of ints from 0 to — 1. For example, range(5) returns [0, 1, 2, 3, 4].
You can also give range a starting value (range(2, 5) returns [2, 3, 4]) and a “skip-by” value
(range(0, 10, 2) returns [0, 2, 4, 6, 8]).

e xrange(x) is similar to range(x), except that it does not actually return a list, but rather
returns an object which can be iterated over and has the same values as if range had been
called. We have not spoken about objects yet, so do not worry too much about what that
means, but the main point is that xrange only generates the next value as you need it without
ever explicitly storing the entire 1ist in memory, whereas range would explicitly store the
list. Thus, xrange can be helpful if you know your code will break early in a long sequence.
Consider the following examples:

Example 1
for x in range(1000000000) :
if x ==
break
print x

Example 2
for x in xrange(1000000000) :
if x ==
break
print x

In both cases the numbers 0,1,2,3,4,5 are printed, but the first code example is almost
a billion times slower because range will actually generate a list of size one billion at the
beginning of the loop, whereas xrange just generates the next number as it is needed.

