
Addis Ababa University, Amist Kilo July 28, 2011
Algorithms and Programming for High Schoolers

Lecture 18

More practice problems! This time one of the problems is taken from the 2011 International
Olympiad for Informatics (http://www.ioi2011.or.th/).

Garden (from the 2011 International Olympiad for Informatics):
You’re in a garden with many fountains. Some fountains are connected by trails, and each trail e
has a beauty factor. No two trails have the same beauty factor. You want to take a path consisting
of exactly k trails that ends at some particular fountain. You’re allowed to start at any fountain
you wish. From wherever you start, you first take the most beautiful trail. From then on, you take
the most beautiful trail from your current location, unless it’s the trail you just came on, in which
case you take the 2nd most beautiful trail; if there is no 2nd trail, you just go back on the same
trail you came from.

Given the movement rule above, how many ways are there to take a path of length exactly k
ending at the target fountain?

Example solution: The most obvious way to solve this problem is to just loop over every possible
starting vertex, follow the path of length k according to the rule above, and see where you end up.
If you end up at the target fountain, add 1 to a counter, then return the counter at the end. The
running time is Θ(nk + m) if for each edge you first calculate the most beautiful and second most
beautiful trail leaving it.

A better solution takes time only Θ(n log2 k+m). The idea is as follows: suppose that for each
vertex v we know where we would end up starting from v after taking 1, 2, 4, 8, . . . steps (for all
powers of 2 up to k). Then, for each vertex, rather than simulate the enter length-k path, we can
skip and take 2j steps at once for the largest j = blog2 kc. Then, from the vertex we wind up at,
there may be more steps to take (k−2blog2 kc steps), so we take the next biggest power of 2 number
of steps we can, etc., until we finally have taken a total of k steps. Thus, figuring out where a path
of length k ends only takes dlog2 ke steps instead of k.

To actually implement the above solution, we just need to know four values: f(v, i, 0), f(v, i, 1),
e(v, i, 0), e(v, i, 1). Here, f(v, i, 0) tells us what vertex we would end up at starting from v after
having taken 2i steps, and where the first trail we take out of v is the most beautiful trail from v.
e(v, i, 0) then tells us what the last edge we would take on this path is. Similarly, f(v, i, 1) tells us
what vertex we would end up at starting from v after having taken 2i steps, and where the first
trail we take out of v is the second most beautiful trail from v, and e(v, i, 1) tells us what the last
edge we would take in this case is.

We can fill in all the f(v, i, 0), f(v, i, 1), e(v, i, 0), e(v, i, 1) values recursively. When i = 0, we
can just compute the answer by looking at the most beautiful (or second most beautiful) trail out
of v. For i > 0:

f(v, i, j) =

{
f(f(v, i− 1, j), i− 1, 1) if e(v, i− 1, j) is the most beautiful trail leaving f(v, i− 1, j)

f(f(v, i− 1, j), i− 1, 0) otherwise

e(v, i, j) =

{
e(f(v, i− 1, j), i− 1, 1) if e(v, i− 1, j) is the most beautiful trail leaving f(v, i− 1, j)

e(f(v, i− 1, j), i− 1, 0) otherwise

1



Fibonacci sum: Recall that the Fibonacci sequence is F0, F1, . . . = 1, 1, 3, 5, 8, 13, 21, . . .
(other than the first two numbers, every following number is the sum of the previous two). Develop
an algorithm to calculate the sum F0 + F1 + . . . + Fn.

Example solution: Let Sn = F0 + F1 + . . . + Fn. Note 1 1 0
1 0 0
1 0 1

 Fi

Fi−1
Si−1

 =

 Fi + Fi−1
Fi

Si−1 + Fi

 .

If we let A be the matrix on the lefthand side above, then

An ·

 F1

F0

S0

 =

 Fn+1

Fn

Sn

 .

This, we can compute Sn in O(log2 n) arithmetic operations via fast powering. One can also
prove that Sn = Fn+2 − 1, so another option is to just reuse the code for computing Fibonacci
numbers and subtracting one.

2


