
Addis Ababa University, Amist Kilo July 27, 2011
Algorithms and Programming for High Schoolers

Lecture 17

More practice problems!

Perimeter: You are given a 2D-image drawn using 10 colors. Each color is represented by
an integer from 0 to 9. The image is described by giving the color of each pixel in the image. Two
pixels are adjacent if one is immediately to the left of the other or immediately above the other.
The image consists of many objects, and two pixels are part of the same object if they are adjacent
and have the same color. The perimeter of an object is the number of pixels on the boundary of
the object; that is, the number of pixels either bordering another object, or bordering one of the
four edges of the image. Given a pixel in an image, calculate the perimeter of the object it lies in.

Example solution: This problem can be solved using any one of depth-first search or breadth-
first search. Create a graph where pixels are vertices, and two vertices have an edge between them
if the pixels are adjacent. Then, we must explore the connected component of the starting pixel
and add one for each vertex we encounter which is either on the edge or is adjacent to a vertex
which is a part of a different object.

def isBorder(image, x, y):

check if (x,y) is on one of the four borders of the image

if x==0 or x+1==len(image) or y==0 or y+1==len(image[0]):

return 1

check if (x,y) borders a pixel with a different color

dx = [0, 0, 1, -1]

dy = [1, -1, 0, 0]

for i in xrange(4):

nx = x + dx[i]

ny = y + dy[i]

if image[x][y]!=image[nx][ny]:

return 1

(x,y) is not on the border

return 0

def recurse(image, x, y, seen):

ans = isBorder(image, x, y)

seen[x][y] = True

dx = [0, 0, 1, -1]

dy = [1, -1, 0, 0]

for i in xrange(4):

nx = x + dx[i]

ny = y + dy[i]

if nx>=0 and nx<len(image) and ny>=0 and ny<len(image[0]):

1

if image[nx][ny]==image[x][y] and not seen[nx][ny]:

ans += recurse(image, nx, ny, seen)

return ans

recursive DFS implementation

image is a list of lists, giving pixel colors

we should compute the answer for the object containing pixel (x,y)

def perimeter(image, x, y):

seen = []

for i in xrange(len(image)):

seen += [[False]*len(image[0])]

return recurse(image, x, y, seen)

Here is another implementation which uses an explicit stack. The isBorder function is the
same as last time, so we don’t repeat it here.

def visit(x, y, stack, seen):

seen[x][y] = True

stack += [[x, y]]

DFS implementation with explicit stack

image is a list of lists, giving pixel colors

we should compute the answer for the object containing pixel (x,y)

def perimeter(image, x, y):

seen = []

for i in xrange(len(image)):

seen += [[False]*len(image[0])]

ans = 0

stack = []

visit(x, y, stack, seen)

while len(stack) > 0:

p = stack.pop()

a = p[0]

b = p[1]

ans += isBorder(image, a, b)

dx = [0, 0, 1, -1]

dy = [1, -1, 0, 0]

for i in xrange(4):

nx = a + dx[i]

ny = b + dy[i]

if nx>=0 and nx<len(image) and ny>=0 and ny<len(image[0]):

if image[nx][ny]==image[a][b] and not seen[nx][ny]:

visit(nx, ny, stack, seen)

return ans

2

Stepping on Nails: You’re in a 2D-room which is n by m meters. The room is divided
into squares that are each 1 square meter each. The bottom-left square is (0,0), and the top-right
is (n-1,m-1). You start in square (x,y) and are trying to get to square (u,v). From each square you
can go to 8 other squares: up, down, left, right, and also the four diagonals. Some squares have
nails on the floor, and if you step on it, it hurts! You don’t mind stepping on a few nails, but if
you step on more than N nails then you’ll need to go to the hospital. Calculate the shortest way
of getting to (u,v) without going to the hospital. If it is impossible, return -1. The starting and
ending locations will not have nails.

Example solution: We create a graph where each vertex represents (x,y,t): the square (x, y) we
are at, and the number of nails t we have stepped on so far (we only have to consider t ≤ N). Each
vertex has eight edges leading to the adjacent vertices, where t either stays the same or increases
by 1, depending on whether we stepped onto a nail. We should return the minimum distance to
(u, v, t) over all 0 ≤ t ≤ N , which we can find using BFS. If we never managed to reach such a
(u, v, t), the answer is −1.

from collections import deque

def visit(x, y, t, queue, distance, D):

distance[x][y][t] = D

queue += [[x,y,t]]

room[i][j] is True if there’s a nail and False otherwise

def fastestRoute(room, x, y, u, v, N):

the makeArray function from Lecture 16

distance = makeArray([room, room[0], N+1], -1)

queue = deque()

visit(x, y, 0, queue, distance, 0)

while len(queue) > 0:

p = queue.popleft()

a = p[0]

b = p[1]

t = p[2]

if a==u and b==v:

return distance[a][b][t]

for dx in xrange(-1, 2):

for dy in xrange(-1, 2):

if dx==0 and dy==0: continue

nx = a + dx

ny = b + dy

if nx>=0 and nx<len(room) and ny>=0 and ny<len(room[0]):

nt = t

if room[nx][ny]: nt += 1

if nt <= N:

visit(nx, ny, nt, queue, distance, distance[a][b][t]+1)

return -1

3

Catching a cockroach: You and a cockroach are in a room. You hate cockroaches, so
you want to catch it and kill it. You start at location (x,y) and the cockroach starts at (u,v).
The room is n x m meters, and the bottom-left square is (0,0), and the top-right is (n-1,m-1).
Cockroaches are simple creatures, and you know how the cockroach behaves: you are given two
lists dx and dy of moves so that you know that in one step, the cockroach moves to (u + dx[0], v +
dy[0]), then from there moves to (u + dx[0] + dx[1], v + dy[0], v + dy[1]), etc. In other words, the
cockroach moves by (dx[i], dy[i]) in the ith step. If any particular step would make the cockroach
run into a wall, the cockroach just stays where he is in that step. If he reaches the end of his list of
moves, he cycles back and does the 0th move again. What is the minimum amount of time required
to catch the cockroach? If any step, we can move either up, down, left, or right. We can also just
choose to stay where we are.

Example solution: We create a graph where the vertices represent (a,b,c,d,i), where our location
is (a,b), the cockroach’s location is (c,d), and the cockroach’s next move is (dx[i], dy[i]). We need
to return the minimum distance to any vertex where (a,b) equals (c,d), and i can be any integer
0 ≤ i < len(dx). This can be done using breadth first search.

from collections import deque

def visit(x, y, u, v, i, queue, distance, D):

distance[x][y][u][v] = D

queue += [[x,y,u,v,i]]

The room is only n x m meters

def catchRoach(x, y, u, v, n, m, dx, dy):

the makeArray function from Lecture 16

distance = makeArray([n, m, n, m, len(dx)], -1)

queue = deque()

visit(x, y, u, v, 0, queue, distance, 0)

while len(queue) > 0:

p = queue.popleft()

a = p[0]

b = p[1]

c = p[2]

d = p[3]

i = p[4]

if a==c and b==d:

return distance[a][b][c][d][i]

cx = [0, 0, -1, 1, 0]

cy = [-1, 1, 0, 0, 0]

calculate the roach’s new location

nrx = c + dx[i]

nry = d + dy[i]

the roach can’t leave the room

if nrx<0 or nrx==n or nry<0 or nry==m:

nrx = c

4

nry = d

for j in xrange(5):

nx = a + cx[j]

ny = b + cy[j]

if nx>=0 and nx<n and ny>=0 and ny<m:

visit(nx, ny, nrx, nry, (i+1)%len(dx),

queue, distance, distance[a][b][c][d][i]+1)

5

