
Addis Ababa University, Amist Kilo July 26, 2011
Algorithms and Programming for High Schoolers

Lecture 16

More practice problems!

Nested brackets: Consider the following lists: [], [[]], [[[]]], [[[[]]]], etc. The first is the empty list,
the second is a list containing the empty list, the third is a list containing a list that contains the
empty list, etc. We say that the first list in this sequence has nesting level zero, and the second has
nesting level 1, etc. Write a function which takes in the nesting level n and outputs the appropriate
list.

Example solutions: With recursion:

def nest(n):

if n == 0:

return []

return [nest(n-1)]

Iteratively:

def nest(n):

ans = []

for i in xrange(n):

ans = [ans]

return ans

Multidimensional arrays: In many programming languages, there exists a data type called an
array (this data type exists in Python as well, though we haven’t discussed it). A one-dimensional
array is similar to a Python list, though you must set its size in the beginning and later cannot
shrink or increase its size. An n-dimensional array A is such that A[i] is an (n − 1)-dimensional
array for each i within the bounds of the size of A. In other words, it is like a nested list of lists,
n deep, where each list has equal size.

Often times in this course, especially when doing memoization, we have had to create a list

of lists. For example, the mem variable in our memoization examples usually has been a list of
n lists, each starting off to contain m −1’s. We usually create such a list as:

mem = []

for i in xrange(n):

mem += [[-1]*m]

Then we can access the jth entry of the ith list as mem[i][j]. What if we wanted to store our
data not two-dimensionally, but n-dimensionally? For example, for n = 3, what if we wanted a
list of n list of m lists, each of size r, so that we could then look at values mem[i][j][k]? Write
a function makeArray that takes a list L of the dimensions of the matrix we want, together with
a value val, and outputs nested lists, where the bottom-most lists in the nesting have all their
entries set to val.

For example, makeArray([2, 3], -1) should return [[-1, -1, -1], [-1, -1, -1]] (a list of 2 lists,
each of size 3, where all the starting values are −1).

1

Example solution:

def makeArray(L, val):

if len(L) == 1:

return [[val]*L[0]]

ans = []

for i in xrange(L[0]):

ans += [makeArray(L[1:], val)]

return ans

Min cost bitonic tour: We have a bunch of points in the plane: [[x0, y0],. . .,[xn−1, yn−1]]. We
would like to start at the 0th point, visit all other points exactly once, then return to the 0th point.
We would like to do this while spending the least amount of time traveling as possible with one
constraint: we have to do our travels west to east, then head back west again. That is, we can’t
zig-zag (we can’t go east, then west, then back east again, then back west again). x0 is the smallest
amongst all the xi, so the 0th point is the westernmost point. Also, xn−1 is the largest amongst
the xi, so it is the easternmost point. This is known as the minimum cost bitonic tour problem.

We can solve this problem using dynamic programming. The optimal path goes east, possibly
skipping some points along the way, lands at xn−1, then heads back west again, finally ending back
at x0. Let’s instead think about our optimal path just going east twice, by thinking about the
return voyage in reverse. So, the first eastward path goes x0 → xi1 → . . . → xir1 → xn−1. The
return voyage, in reverse, goes x0 → xj1 → . . . → xjr2 → xn−1. We should not have any repeats
amongst the xi and xj , and also we should have r1 + r2 = n− 2 (we should visit all the points).

Example solution:

import math

def distance(x, y):

dx = x[0] - y[0]

dy = x[1] - y[1]

return math.sqrt(dx*dx + dy*dy)

def recurse(L, at1, at2, mem):

if at1+1==len(L) and at2+1==len(L):

return 0

elif mem[at1][at2] != -1:

return mem[at1][at]

ans = float(‘infinity’)

if at2 <= at1 + 1:

for i in xrange(at2 + 1, len(L)):

ans = min(ans, distance(L[at1], L[i]) + recurse(L, at2, i, mem))

else:

ans = recurse(L, at1 + 1, at2, mem)

mem[at1][at2] = ans

return ans

2

We assume the points are already sorted from west to east, i.e. by

their x coordinate. We also assume all x coordinates are unique.

def bitonicTour(L):

mem = makeArray([len(A), len(A)], -1)

return recurse(L, 0, 0, mem)

The running time is Θ(n2). There are Θ(n2) possibilities for a, b, and only for O(n) of these
possibilities do we actually have to spend Θ(n) time; the rest only require Θ(1) time. The basic
idea of the solution is to build both paths simultaneously from left to right. Initially both parts
start at the 0th point. Then at any given stage, suppose one path ends at L[at1] so far, and the
other ends at L[at2], with at1 ≤ at2. Since we have to visit all points, if there are points between
L[at1] and L[at2], then we have no choice: the one path has to visit L[at1+1] next. Otherwise, if
there are no points in between (i.e. at2 and at1 differ by at most 1), then the path that ended at
L[at1] can choose where to go next, to some point after L[at2], possiby skipping some number of
points. We try all possibilities and take the best choice.

3

