
Addis Ababa University, Amist Kilo July 21, 2011
Algorithms and Programming for High Schoolers

Lecture 13

Numerical algorithms: Today we’ll cover algorithms for various numerical problems:
integer multiplication, powering, and solving linear systems of equations.

Integer Multiplication: We all learned how to multiply numbers with lots of digits when
we were kids:

435
213

1305
435
870

92655

Suppose the integers were given in input as lists of their digits, from left to right. Then the
above method corresponds to the following code.

takes two lists of digits representing integers a,b and outputs a

list of digits corresponding to their product

def integerMultiply(a, b):

we will put the result in c

c = [0]*(len(a) + len(b))

for i in xrange(len(b)):

atB = len(b) - i - 1

multiply b[atB] by a and put it in t

t = [0]*(len(a) + 1)

keep track of the carry digit

carry = 0

for j in xrange(len(a)):

atA = len(a) - j - 1

product = b[atB]*a[atA] + carry

t[len(t) - 1 - j] = product % 10

carry = product / 10

t[0] = carry

now add t, shifted over by i to the left, to c

carry = 0

for j in xrange(len(t)):

sum = c[len(c) - 1 - j - i] + t[len(t) - 1 - j] + carry

c[len(c) - 1 - j - i] = sum % 10

carry = sum / 10

strip away the leading zeroes from c before returning it

1

at = 0

while at<len(c) and c[at]==0:

at += 1

if at == len(c):

return [0]

else:

return c[at:]

In fact, the above code is more memory-efficient than the grade school way of multiplying we
learned, since it adds to the result after processing every digit in b rather than waiting to process
all digits then add up everything at the end. If both numbers have n digits, the running time of
the above implementation is Θ(n2) (two nested for loops each taking n steps), and the memory
usage is Θ(n).

How can we speed this up? Let’s try the divide and conquer method. Divide and conquer is
a strategy based on dividing up the input into smaller pieces, solving the problem on the smaller
pieces, then combining the result to get the answer for the full input. We did this for example with
mergeSort: to sort a list we divided it into two smaller pieces, recursively solved (i.e. sorted) the
smaller pieces, then merged to get the result for the overall input.

So, let’s say we’re trying to multiply a list of digits a by another list of digits b, each of
length n. For the sake of simplifying all future discussion, let’s assume n is a perfect power of 2
(if not, we can pad both a and b by 0s at their beginnings until their lengths are powers of 2, and
doing this at most doubles n). Let ahigh represent the first half of the digits of a, i.e. a[: n/2], and
let alow represent a[n/2 :]. Then, treating a as an integer, a = ahigh · 10n/2 + alow. Doing similarly
for b, this means that

a× b = (ahigh · 10n/2 + alow)× (bhigh · 10n/2 + blow)

= ahigh · bhigh · 10n + (ahigh · blow + alow · bhigh) · 10n/2 + alow · blow

In other words, to multiply two n-digit numbers, we just need to multiply four pairs of n/2-digit
numbers, shift some results over by either n/2 or n (this is what multiplying by a power of 10 does),
then add up the results. Shifting n-digit numbers over and adding them takes Θ(n) time. When
n = 1, we can just do the multiplication in constant time. Thus, if T (n) is the running time to
multiply two n-digit numbers, we have the recurrence

T (n) =

{
Θ(1) if n = 1

4 · T (n/2) + Θ(n) otherwise

If we draw out the recursion tree for T , labeling each node with how much work needs to
be done there, the root does at most Cn work for some constant C. It then has 4 children,
each doing Cn/2 work. Each of those children then again has 4 children, each doing Cn/4 work.
This goes on for log2 n levels of the tree, at which point n is finally 1. Thus the total work is∑log2 n

i=0 4i · (Cn/2i) = Cn ·
∑log2 n

i=0 2i. Recalling that
∑t

i=0 x
i = (xt+1 − 1)/(x − 1) for x 6= 1, this

means that the total work is Cn · (21+log2 n−1) = 2Cn2−Cn = Θ(n2). In other words, the obvious
recursive divide-and-conquer approach for this problem has no benefit over the way we learned to
solve the problem in grade school.

2

Karatsuba’s algorithm Anatolii Alexeevitch Karatsuba in 1960 found a way to make the divide-
and-conquer approach work for speeding up integer multiplication. The story goes that Andrey
Kolmogorov, a giant of probability theory and other areas of mathematics, had a conjecture from
1956 stating that it is impossible to multiply two n-digit numbers in faster than Ω(n2) time. In
1960 Kolmogorov told many scientists his conjecture at a seminar at Moscow State University, and
Karatsuba, then in the audience, went home and disproved Kolmogorov’s conjecture in exactly one
week1. Let’s now cover the method he came up with.

Let X = ahigh · bhigh, Y = alow · blow, and Z = (ahigh + alow) · (bhigh + blow). Then

a× b = X · 10n + (Z −X − Y) · 10n/2 + Y.

Thus, now, to multiply two n-digit numbers we only need to multiply three pairs of n/2-digit
numbers. This gives the recurrence

T (n) =

{
Θ(1) if n = 1

3 · T (n/2) + Θ(n) otherwise
.

Now if we draw out the recursion tree for T , labeling each node with how much work needs
to be done there, the root does at most Cn work for some constant C. It then has 3 children,
each doing Cn/2 work. Each of those children then again has 3 children, each doing Cn/4 work.
This goes on for log2 n levels of the tree, at which point n is finally 1. Thus the total work is∑log2 n

i=0 3i · (Cn/2i) = Cn ·
∑log2 n

i=0 (3/2)i. Recalling that
∑t

i=0 x
i = (xt+1−1)/(x−1) for x 6= 1, this

means that the total work is Cn · ((3/2)1+log2 n − 1) = 1.5Cnlog2 3 − Cn = Θ(nlog2 3) ≈ Θ(n1.585).
In fact it is possible to get integer multiplication algorithms with running times just a bit larger

than n log n using what’s known as the Fast Fourier Transform, but we will not cover these methods
in this course.

Powering: Another important numerical algorithm is that for powering. Suppose we have
two integers a, n and would like to compute an. The obvious way would be something like the
following:

def power(a, n):

ans = 1

while n > 0:

ans *= a

n -= 1

return ans

The above method does n integer multiplications in order to compute an. A faster method is
given below, which is known as the method of repeated squaring.

def power(a, n):

if n == 0:

return 1

1See A. A. Karatsuba. The complexity of computations. Proceedings of the Steklov Institute of Mathematics,
Vol. 211, pp. 169–183, 1995.

3

b = power(a, n/2)

b *= b

if n % 2 == 1:

b *= a

return b

That is, to raise a to the nth power, we just need to raise it to the bn/2cth power then square
the result (and multiply in an extra factor of a if n was odd). The repeated squaring method
performs at most 2 log2 n = O(log2 n) integer multiplications to compute an.

The method of course does not only work for raising integers to integer powers. We could also
use it, for example, to raise matrices to integer powers. Recall that an n×m matrix is a 2D-grid
of numbers, with n rows and m columns. The definition of multiplication of matrices is that if A is
n×m and B is m× p, then AB is n× p where the (i, j)th entry of AB is equal to

∑m
k=1Ai,k ·Bk,j .

Let Fi be the ith Fibonacci number. Consider the following matrix product:[
1 1
1 0

] [
Fi

Fi−1

]
=

[
Fi + Fi−1

Fi

]
.

If we let A be the matrix on the lefthand side above, then

An ·
[
F1

F0

]
=

[
Fn+1

Fn

]
Thus we can compute the nth Fibonacci number in just O(log2 n) integer multiplications by

doing repeated squaring to calculate An−1 then multiplying the result by a 2×1 matrix then reading
off the result.

Gaussian Elimination: The last thing we’ll cover today is solving systems of linear
equations. The most well known algorithm for doing this is called Gaussian Elimination, named
after the 19th century mathematician Carl Friedrich Gauss, though it was named after him by
mistake. The algorithm appeared roughly 2000 years ago in the 19th century Chinese math book
“The Nine Chapters on the Mathematical Art”, and was rediscovered in Europe by Isaac Newton
(one of the creators of calculus) in the late 1600s.

So what is the method? Suppose we have n variables x1, . . . , xn. We also have n equations, the
ith of which is of the form

∑n
j=1Ai,jxj = bi. We can write down this linear system of equations

in matrix form. A is an n× n matrix, where the ith row contains all the coefficients Ai,j . x is an
n × 1 matrix (usually called a vector) where the ith entry is xi. Then b is a length-n vector with
its ith entry being bi, and we would like to find an x such that Ax = b is true.

Let Ai denote the ith row of i. The key to Gaussian elimination is just noting that if Aix = bi
and Ajx = bj are both true, then so is any linear combination, i.e. (c1Ai + c2Aj)x = c1bi + c2bj
is also true. Also, if A was a diagonal matrix (all the entries under the top-left to bottom-right
diagonal in A are 0), we could easily tell what the xi should be. So, we keep doing row simplification
on the matrix A until it becomes diagonal, then read off the answer for x.

Here’s an example of a diagonal matrix:
1 1 0 10
0 −4 2 −1
0 0 7 12
0 0 0 1

4

We now give the code.

def gaussianElimination(A, b):

n = len(A)

x = [0]*n

for k in xrange(n):

try to make the kth row of A only have entries from k onward

but first, find a row that has some non-zero entry in the

kth column, and swap it to make it the kth row

pivot = k;

for i in xrange(k, n):

if A[i][k] != 0:

pivot = i

break

if pivot != k:

b[k],b[pivot] = b[pivot],b[k]

for i in xrange(k, n):

A[k][i],A[pivot][i] = A[pivot][i],A[k][i]

now change the ith row of A to zero out its kth column by

adding a multiple of the kth row to it

for i in xrange(k+1, n):

factor = -A[i][k] / A[k][k]

b[i] = b[i] + factor*b[k]

for j in xrange(k, n):

A[i][j] = A[i][j] + factor * A[k][j]

now A is diagonal and its easy to solve for x

for ii in xrange(n):

i = n - ii - 1

x[i] = b[i]

for j in xrange(i+1, n):

x[i] = x[i] - A[i][j]*x[j]

x[i] = x[i] / A[i][i]

return x

5

