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Lecture 12

Single-source shortest paths: We saw in Lab 10 that breadth-first search can be used
to find the shortest path between two vertices in a graph. But what if the edges in the graph have
different lengths? For example, in a graph representing an airport network, edges have associated
lengths corresponding to the amount of time it takes to fly from one airport to the next. Then, we
might not just be interested in getting from one place to another in as few stops as possible, but
we may instead be interesting in minimizing total flight time.

A weighted graph is a triple (V,E,w), where w is a weight function. Each edge e ∈ E has a
weight w(e), which may be positive, zero, or negative. Now how can we find the shortest path from
one vertex to the others in such a graph? This can be done using recursion and memoization. The
non-recursive, iterative implementation of this approach is called the Bellman-Ford algorithm.

The basic idea is to create a recursive function shortestPathHelper(x, y, t) which finds the
shortest path from x to y which takes at most t steps. One option is that it is the same as the
shortest path taking at most t − 1 steps, and the other is that we should travel to some vertex z
first in t−1 steps then take the edge (z, y) in the tth step. We recurse on both options and take the
better of the two, and we use memoization to make the function faster. Note that if it’s possible
to get from x to y at all, then it is possible to do so in n− 1 steps, where the graph has n vertices,
so the length of the shortest path from x to y is shortestPathHelper(x, y, n-1).
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Figure 1: The numbers on edges are weights. This graph has a negative weight cycle 0→ 1→ 2→ 0.

In some graphs though, such as those in Figure 1, there is no shortest path from some vertex
to another. For example, to go from vertex 0 to 3, we could take the route 0 → 1 → 3 for a total
length of −1 + 1 = 0. However note that the cycle 0→ 1→ 2→ 0 has a total length of −1. Thus,
by repeatedly going on this cycle over and over again, we can make our total length arbitrarily
small before finally heading over to vertex 3. Thus, in essence, the length of the shortest path from
0 to 3 is −∞. We modify our shortestPath code to detect such negative-weight cycles. If any
such cycle is found, starting from our starting vertex x, then we return −1. Otherwise we return
a list with all the shortest path distances.

How can we detect a negative-weight cycle? Let such a reachable cycle be v0, v2, . . . , vk−1.
Let d[u] be the shortest path distance from x to u taking at most n − 1 steps. For the sake of
contradiction, assume that we cannot improve the distance to any of the vi by looking at paths of
length n. That means that d[vi] ≤ d[vi−1] + w(vi−1, vi) for all i (with the understanding that v−1

is just vk−1). Summing up all these inequalities gives

k∑
i=1

d[vi] ≤
k∑

i=1

d[vi−1] +
k∑

i=1

w(vi−1, vi)
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Since each d[vi] appears exactly once in the summations on both sides, we can cancel to then get

0 ≤
k∑

i=1

w(vi−1, vi).

This is a contradiction, since we assumed that this cycle had negative total weight.
Our implementation now follows.

# returns length of shortest path from x to y using at most t steps

def shortestPathHelper(B, x, y, t, mem, seen):

if t == 0:

if x == y:

return 0

return float(‘infinity’)

elif seen[y][t]:

return mem[y][t]

seen[y][t] = True

# first option: do it in t-1 steps

ans = shortestPathHelper(B, x, y, t-1, mem, seen)

# second option: go to a vertex z that has an edge to y first, in

# at most t-1 steps, then take the edge (z, y)

for p in B[y]:

z = p[0]

weight = p[1]

val = shortestPathHelper(B, x, z, t-1, mem, seen)

ans = min(ans, weight + val)

mem[y][t] = ans

return ans

# A is the adjacency list of the graph

# A[u][i][0] is the ith neighbor of vertex u, and A[u][i][1] is the

# weight of the edge (u, A[u][i][0])

#

# returns a list L so that L[j] is the length of the shortest path

# from x to j, assuming no negative-weight cycle is reachable from

# i. returns -1 if a negative-weight cycle is reachable from i.

def shortestPath(A, x):

mem = []

# mem[i][j] is float(‘infinity’) if we can’t get from x to i in at

# most j steps. Otherwise, it’s the length of the shortest path

# from x to i taking at most j steps.
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for i in xrange(len(A)):

mem += [[float(‘infinity’)]*(len(A)+1)]

seen = []

# seen[i][j] is True if we’ve already filled in mem[i][j] and is

# False otherwise

for i in xrange(len(A)):

seen += [[False]*(len(A)+1)]

# B is an inverse adjacency list. B[i] is a list of all vertices

# j such that (j, i) is an edge, plus the weight of the edge

B = []

for i in xrange(len(A)):

B += [[]]

for i in xrange(len(A)):

for p in A[i]:

# p is the pair [j, weight(i, j)]

B[p[0]] += [[i, p[1]]]

# check if a negative weight cycle is reachable from x

for z in xrange(len(A)):

val1 = shortestPathHelper(B, x, z, len(A) - 1, mem, seen)

val2 = shortestPathHelper(B, x, z, len(A), mem, seen)

if val2 < val1:

return -1

L = []

for y in xrange(len(A)):

L += [shortestPathHelper(B, x, y, len(A) - 1, mem, seen)]

return L

Näıvely one could say that the running time of the algorithm is O(n3): in the memoized helper
function there are n choices for y, n choices for t, and the loop over B[y] might run for n− 1 steps.
For some graphs this could happen, but in fact the algorithm’s running time is Θ(n(m+n)), where
the graph has m edges. nm is always at most n3 since m is at most n2, but it can be a lot faster
if the graph doesn’t have too many edges. The reason the running time is Θ(n(m + n)) is the
following. Look at the for loop “for p in B[y]” in shortestPathHelper. The total number of
(p, y) values this loop executes with is exactly m: each (p, y) pair corresponds to an edge in the
graph. Then, there are n possible values of t, giving nm.

The n2 term comes from there being n possible values of both y and t, though this term can
be removed with a better implementation, which we give below. The below implementation is an
iterative implementation of the approach above, but written iteratively instead of recursively. It
is known as the Bellman-Ford algorithm. The code is also quite a bit shorter than the recursive
implementation given above.
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def bellmanFord(A, x):

# E is a list of edges with weights

E = []

for i in xrange(len(A)):

for p in A[i]:

E += [[i] + p]

# dist[i] is the length of the shortest path to i

dist = [float(‘infinity’)]*len(A)

dist[x] = 0

for i in xrange(len(A) - 1):

for e in E:

u = e[0]

v = e[1]

weight = e[2]

dist[v] = min(dist[v], dist[u] + weight)

# look for negative weight cycles

for e in E:

u = e[0]

v = e[1]

weight = e[2]

if dist[u] + weight < dist[v]:

return -1

L = []

for i in xrange(len(A)):

L += [dist[i]]

return L

All pairs shortest paths: What about finding all shortest path lengths between all pairs
of vertices? Here we use memoization yet again. Let’s assume the graph has no negative weight
cycles. An iterative, non-recursive version of the below approach is known as the Floyd-Warshall
algorithm.

The approach is to let shortestPathHelper(u, v, k) be the length of the shortest path where
the intermediate vertices come from the set {0, 1, . . . , k− 1}. For such a shortest path we have two
choices: either don’t use vertex k − 1 at all, so that the answer is shortestPathHelper(u, v, k-1),
or use it so that the answer is shortestPathHelper(u, k-1, k-1) + shortestPathHelper(k-1, v,
k-1). When k = 0 we cannot use intermediate vertices, which means the answer is just the weight
of the edge from u to v.

def shortestPathHelper(u, v, k, w, mem, seen):

if k == 0:

return w[u][v]

elif seen[u][v][k]:

return mem[u][v][k]
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seen[u][v][k] = True

option1 = shortestPathHelper(u, v, k-1, w, mem, seen)

val1 = shortestPathHelper(u, k-1, k-1, w, mem, seen)

val2 = shortestPathHelper(k-1, v, k-1, w, mem, seen)

mem[u][v][k] = min(option1, val1 + val2)

return mem[u][v][k]

# w is a matrix of edge weights, i.e. w[i][j] is the weight of the

# edge (i,j). If that edge doesn’t exist, we assume w[i][j] is then

# float(‘infinity’)

def shortestPath(w):

ans = []

for i in xrange(len(w)):

ans += [[-1]*len(w)]

mem = []

for i in xrange(len(w)):

l = []

for j in xrange(len(w)):

l += [[-1]*(len(w)+1)]

mem += [l]

# seen[i][j][k] is True if we’ve already filled in mem[i][j][k],

# and it is False otherwise

seen = []

for i in xrange(len(w)):

l = []

for j in xrange(len(w)):

l += [[False]*(len(w)+1)]

seen += [l]

for i in xrange(len(w)):

for j in xrange(len(w)):

ans[i][j] = shortestPathHelper(i, j, len(w), w, mem, seen)

return ans

In fact, a non-recursive implementation of this approach is much slicker and amounts to just
three for loops. This is known as the Floyd-Warshall algorithm. It also uses less memory than the
implementation above (Θ(n2) instead of Θ(n3)).
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def floydWarshall(w):

# now dist is a copy of the weight function

dist = w[:]

for k in xrange(len(w)):

for u in xrange(len(w)):

for v in xrange(len(w)):

dist[u][v] = min(dist[u][v], dist[u][k] + dist[k][v])

return dist

Both the iterative and recursive implementations of Floyd-Warshall above take Θ(n3) time,
though the iterative implementation requires less memory.
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