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Lab 6

Exercise 1: Consider the recursive makeChange implementation in the lecture notes, without
memoization:

# if we can’t make change for n cents using L, returns -2

def makeChange(n, L):

if n==0:

return 0

# if possible to make change for n, the answer is definitely less

# than n + 1

answer = n + 1

for x in L:

if x <= n:

val = makeChange(n-x, L)

if val != -2:

answer = min(answer, 1 + val)

if answer == n + 1:

answer = -2

return answer

What’s the running time of this function in terms of n when L is the list [1,2]?

Hint: You’ve already figured out the answer to this in a previous lab.

Answer: O(((1 +
√

5)/2)n). The recurrence for the running time is exactly the same in the case
as it is for the recursive implementation of the fibonacci function (T (n) = T (n − 1) + T (n − 2)
for n ≥ 2).

Exercise 2: Modify the memoized makeChange implementation so that it doesn’t just tell you
the minimum number of coins that are needed to make change, but instead it returns a list of which
coins you should use to make change using the fewest number of coins.

Example solution: The most natural solution given what was in class is to change the return
type in memMakeChange from an int to a list.

def memMakeChange(n, L, mem):

if n==0:

return []

elif mem[n]!=-1:

return mem[n]

mem[n] = []

for i in xrange(n):

mem[n] += [1]

for coin in L:
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if coin <= n:

val = memMakeChange(n-coin, L, mem)

if 1+len(val) < len(mem[n]):

mem[n] = val + [coin]

return mem[n]

# we assume L contains a 1-cent piece so that it’s always possible to

# make change for n cents

def makeChange(n, L):

mem = []

for i in xrange(n+1):

mem += [-1]

return memMakeChange(n, L, mem)

If the length of the list L is m, the above implementation takes time O(n2m). This is becomes
in the for loop in memMakeChange, we are creating lists of potentially size n (when creating the list
val + [coin], if, say, all elements in L are 1). It is possible to give an implementation taking time
only O(nm). The main idea is to have two mem lists. The first list, mem, is such that mem[n] is the
smallest number of coins needed to make change for n cents. Then, mem2[n] is one possible coin
that can be used in an optimal solution to make change for n cents.

def memMakeChange(n, L, mem, mem2):

if n==0:

return 0

elif mem[n] != -1:

return mem[n]

mem[n] = n

for coin in L:

if coin <= n:

val = memMakeChange(n-coin, L, mem, mem2)

if val+1 < mem[n]:

mem[n] = val+1

mem2[n] = coin

return mem[n]

# mem[n] is the minimum number of coins to make change for n

# mem2[n] is one coin you can take as part of the optimal solution for n

# we assume L contains a 1-cent piece so that it’s always possible to

# make change for n cents

def makeChange(n, L):

mem = []

mem2 = []

for i in xrange(n+1):

mem += [-1]

mem2 += [-1]

memMakeChange(n, L, mem, mem2)
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answer = []

while n > 0:

answer += [mem2[n]]

n -= mem2[n]

return answer

Exercise 3: Write a function lis(L) which takes as input a list of integers L and outputs the
length of the longest increasing subsequence (lis) of L. A subsequence of L is a sublist of L that does
not have to be contiguous. For example, [1, 5, 9] is a subsequence of the list L = [1,2,3,4,5,6,7,8,9]
since 1,5,9 appear in the list L in the same order (though just not in a row). 9,5,1 is not a
subsequence of L since it does not appear in L in that order.

Your implementation should run in time O(m2) where the size of L is m. Bonus (try at the
end): See if you can find a way to solve the problem in O(m logm) time.

Solution will be provided tomorrow.

Exercise 4: (taken from http://people.csail.mit.edu/bdean/6.046/dp/)

You are given a list of boxes, each having some height, width, and depth. You want to stack
boxes to make the tallest stack possible, where you can only put one box on top of the other if
its base has strictly smaller length and width than the box immediately underneath it. Given a
list L of boxes of the form L = [[width1, height1, depth1], [width2, height2, depth2], . . ., [widthm,
heightm, depthm]], implement a function boxes(L) which returns the height of the tallest stack
you can possibly make using the given boxes. You do not have to use all the boxes given to you,
and you can use the same box multiple times.

Solution will be provided tomorrow.

Exercise 5: In the knapsack problem we assume we have a bag that can hold some n liters of
volume, and we want to pack the bag with the most valuable combination of items possible out
of some given list of items. Implement a function knapsack(n, L) which takes as input this bag
volume n, and a list of items L, and returns the maximum value you can pack in the bag. L is a list
of lists, where each list in L is of size 2 containing the volume of the item as its 0th element, and
its volume as its 1st element. For example, L = [[7, 10], [5, 6], [4, 5]] represents a list of 3 items.
The first item takes 7 liters and is worth 10 dollars, the second item takes 5 liters and is worth 6
dollars, and the last item takes 4 liters and is worth 5 dollars. knapsack(10, [[7, 10], [5, 6], [4, 5]])
should return 11 since the best thing to do is to take the and and third item (which both fit, since
their total volume is 5 + 4 = 9 liters, and we can fit 10 liters).

Your implementation should run in time O(nm) where the size of L is m.
Solution will be provided tomorrow.
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