
Addis Ababa University, Amist Kilo July 20, 2011
Algorithms and Programming for High Schoolers

Lab 12

Exercise 1: Modify the code for the Bellman-Ford single-source shortest path algorithm so that
it takes as input the origin x and destination y and returns the actual shortest path from x to y
and not just the length of the shortest path. You can assume that y is reachable from x and that
there are no negative weight cycles.

Example solution: The basic idea is to add a list from of length n, where n is the number of
vertices. from[u] is the vertex right before u on the shortest path from x to u (if u is x, then we
set from[u] to −1).

def bellmanFord(A, x, y):

E is a list of edges with weights

E = []

for i in xrange(len(A)):

for p in A[i]:

E += [[i] + p]

dist[i] is the length of the shortest path to i

dist = [float(‘infinity’)]*len(A)

from = [-1]*len(A)

dist[x] = 0

for i in xrange(len(A) - 1):

for e in E:

u = e[0]

v = e[1]

weight = e[2]

if dist[u] + weight < dist[v]:

from[v] = u

dist[v] = weight

look for negative weight cycles

for e in E:

u = e[0]

v = e[1]

weight = e[2]

if dist[u] + weight < dist[v]:

return -1

build the shortest path, from the end to the beginning

L = []

at = y

while at != -1:

L += [at]

at = from[at]

1

L.reverse()

return L

Exercise 2: Modify the code for Floyd-Warshall (either the recursive or iterative approach) to
keep track of a matrix next[][] so that next[u][v] is some intermediate vertex on the shortest path
from u to v (or the Python value None if there is no intermediate vertex). Now write a recursive
procedure findPath which takes u, v, and the dist and next matrices, and returns the shortest
path from u to v as a list. For example, if the shortest path from 0 to 3 is 0 → 1 → 3, then
findPath should return [0,1,3].

Example solution: In fact, findPath does not need the dist matrix.

findPath should be called with the next list that’s generated in

floyd Warshall

def findPath(u, v, next):

if there’s no intermediate vertex, we just directly take the

edge (u,v)

if next[u][v] == -1:

return [u, v]

otherwise we recurse. in the second recursion we don’t take the

0th element so that next[u][v] doesn’t show up twice in the

final output

return findPath(u, next[u][v], next) + findPath(next[u][v], v, next)[1:]

def floydWarshall(w):

now dist is a copy of the weight function

dist = w[:]

next = []

for i in xrange(len(w)):

next += [[-1]*len(w)]

for k in xrange(len(w)):

for u in xrange(len(w)):

for v in xrange(len(w)):

if dist[u][k] + dist[k][v] < dist[u][v]:

dist[u][v] = dist[u][k] + dist[k][v]

next[u][v] = k

return dist

Exercise 3: Modify the code for Floyd-Warshall to return -1 if there exists a negative weight
cycle somewhere in the graph. Otherwise, it should return a matrix of distances as before.

Example solution: There’s a negative weight cycle if and only if some vertex has a negative
distance to itself.

2

def floydWarshall(w):

now dist is a copy of the weight function

dist = w[:]

for k in xrange(len(w)):

for u in xrange(len(w)):

for v in xrange(len(w)):

dist[u][v] = min(dist[u][v], dist[u][k] + dist[k][v])

for i in xrange(len(w)):

if dist[i][i] < 0:

return -1

return dist

3

