
Practice Exam Solutions

Algorithms and Programming for High Schoolers

(AddisCoder)

Question 1: Imagine evaluating the following expressions in order in the
Python interpeter. For each expression written in red, write down what the
expression would evaluate to in the space below. If the expression would
cause an error in Python, then write Error.

>>> x = 5

>>> y = 7

>>> z = 2

>>> x * y + z

37

>>> (x * y) + z

37

>>> x * (y + z)

45

>>> x % y

5

>>> y % x

2

>>> [] * z

1



[]

>>> [] * ‘2’

Error. (can’t multiply a list by a str)

>>> [1] * z + x

Error. (can’t add the list [1,1] to the int 5)

>>> str(2)

‘2’

>>> [[]][0]

[]

>>> [[]][1]

Error. The list [[]] has no 1st element.

>>> len([[[]]])

1

>>> [[]][]

Error. This is invalid Python syntax.

>>> x = [2, 3]

>>> y = []

>>> for i in xrange(x[0]**x[1]):

>>> y += [i*2]

>>> y

[0, 2, 4, 6, 8, 10, 12, 14]

>>> def isPrime(x):

>>> if x < 2: return False

>>> for i in xrange(2, x):

2



>>> if i*i >= x: break

>>> if x % i == 0: return False

>>> return True

>>> isPrime(1)

False

>>> isPrime(2)

True

>>> isPrime(9)

True (to be correct the loop should break if i*i > x)

>>> isPrime(12)

False

Question 2: Consider the lists [], [[]], [[[]]], . . . The depth of such
a list is the number of nested layers of brackets. So, depth([]) is 0,
depth([[]]) is 1, depth([[[]]]) is 2, etc. Write a function depth(L)
which takes such a list and computes its depth. What’s the running time
of your function in terms of n, the number of brackets in the list?

Example solution:

def depth(L):

if L == []: return 0

return 1 + depth(L[0])

The running time is Θ(n).

Question 3: Consider the following code for testing whether a number is
prime or not.

def isPrime(n):

if n < 2: return False

for i in xrange(2, n):

if n % i == 0: return False

return True

What is the running time of this code as written? Is it correct? If it’s not
correct, suggest a minor change to the code which would make it correct.
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Example solution: The running time of the code as written is Θ(1): the
first time through the loop, the code returns. In fact, as written, the code
is incorrect: it will just return True if either n = 2, or n ≥ 3 and n is odd.
A minor change to make the code correct would be to indent the return

True differently to be directly under the for loop instead of being a part of
the code block of the for loop.

Question 4: Write a function cubeRoot(n) which takes a positive integer
n and outputs the largest integer x such that x3 ≤ n.

(a) Give a solution with running time O(n).

(b) Give a solution with running time O(log2 n).

The running times above are assuming you can do arithmetic on integers
up to n in O(1) time.

Example solution: Note that any function which is O(log2 n) is also
O(n), so it suffices to just give a solution with running time O(log2 n). Here
is such a solution using binary search:

# do a binary search amongst integers in [x,y] for the answer

def binarySearch(x, y, n):

if x == y:

return x

# let mid be ceil((x+y)/2) (which is why we put the + 1)

# if you don’t put the + 1, the code will run forever if y == x+1

# and the elif occurs (because mid will just be x again).

# alternatively, above you could have a separate check for y ==

# x+1 and handle that case separately

mid = (x + y + 1) / 2

cube = mid**3

if cube == n:

return mid

elif cube < n:

return binarySearch(mid, y, n)

else:

return binarySearch(x, mid - 1, n)

def cubeRoot(n):

return binarySearch(0, n, n)

4



It’s also possible to solve just problem (a) more simply without binary
search, just using a while loop. The following code takes Θ(n) time.

def cubeRoot(n):

x = 0

while x*x*x <= n:

x += 1

return x - 1

Question 5: Suppose we have a list of numbers L[0],L[1],. . .,L[n-1]. An
inversion in the list is a pair i, j such that i < j but L[i] > L[j]. In other
words, an inversion is a pair of indices where the larger number comes before
the smaller number.

Describe an algorithm for counting the number of inversions in a list,
then implement your algorithm in Python as countInversions(L). Faster
running times get more points. Hint: The problem is solvable in Θ(n log2 n)
time, though an easier solution takes Θ(n2) time. You get more points for
giving a slow, correct solution than a fast, incorrect solution.

Example solution: Here is a simple implementation taking Θ(n2) time.
We simply try all pairs and count the number of inversions.

def countInversions(L):

ans = 0

for i in xrange(0, len(L)):

for j in xrange(i + 1, len(L)):

if L[i] > L[j]:

ans += 1

return ans

A faster solution, taking only Θ(n log2 n) time, is to modify mergeSort.
The basic idea is that during a merge operation, everytime the next smallest
item comes from the right half instead of the left half, that means the element
from the right half is inverted with respect to all the remaining items in the
left half, so we can add that many inversions. The code follows.

# merge(A, B) returns a list with two elements. The 0th element is

# the merged list of A,B, and the 1st element is the number of

# inversions between elements of A and elements of B (i.e., how many

# pairs (a,b) with a in A and b in B have a > b).
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def merge(A, B):

inversions = 0

C = []

atA = 0

atB = 0

for i in xrange(len(A) + len(B)):

if atA == len(A):

C += B[atB:]

break

elif atB == len(B):

C += A[atA:]

break

elif A[atA] < B[atB]:

C += [A[atA]]

atA += 1

else:

C += [B[atB]]

atB += 1

inversions += len(A) - atA

return [C, inversions]

# mergeSort(L) returns a list with two elements. The 0th element is

L, sorted, and the 1st element is the number of inversions in L.

def mergeSort(L):

A = L[:len(L)/2]

B = L[len(L)/2:]

C = mergeSort(A)

D = mergeSort(B)

E = merge(C[0], D[0])

return [E[0], C[1] + D[1] + E[1]]

def countInversions(L):

return mergeSort(L)[1]

Question 6: We’ve discussed making change using the least number of
coins possible. What if we want to count how many different ways there are
of making change? For example, if the coins we have available are [1,5,10,25]
cents and we want to make change for 12 cents, there are 4 ways: (1) give
all 1-cent pieces, (2) give a 10-cent piece and two 1-cent pieces, (3) give two
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5-cent pieces and two 1-cent pieces, and (4) give one 5-cent piece and seven
1-cent pieces. So, the answer in this case is 4.

Write a function change(L, n) which outputs the number of ways to
make change for n cents when the coin denominations available are those
in L. For example, change([1,5,10,25], 12) should return 4. What is the
running time of your solution? Faster running times get more points.

Example solution: The basic idea is to use recursion and memoization.
Let f(x, n) be the number of ways to make change for n cents using only
the coins L[x:]. Then,

f(x, n) =


1, if n = 0

0, if x = len(L) and n > 0

f(x + 1, n), if x < len(L) and L[x] > n

f(x, n− L[x]) + f(x + 1, n), otherwise

The corresponding code is as follows.

def recurse(L, x, n, mem):

if n == 0:

return 1

elif x == len(L):

return 0

elif mem[x][n] != -1:

return mem[x][n]

mem[x][n] = recurse(L, x+1, n, mem)

if L[x] <= n:

mem[x][n] += recurse(L, x, n - L[x], mem)

return mem[x][n]

def change(L, n):

mem = []

for i in xrange(len(L)):

mem += [[-1]*(n+1)]

return recurse(L, 0, n, mem)

If the length of L is m, the running time is Θ(nm) in the worst case.

Question 7: Given a directed graph where each edge has a length, describe
an algorithm that takes as input two vertices u, v and an integer k ≥ 0 and
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outputs the length of the shortest path from u to v which takes exactly k
steps. The path is allowed to visit vertices multiple times (for example, the
path 1→ 3→ 2→ 3→ 7 is a valid path from 1 to 7 of length 4, even though
it visits vertex 3 twice). What is the running time of your algorithm? You
do not have to write the code for it.

Example solution: For a vertex w and integer t, let f(w, t) be the length
of the shortest path from u to w taking exactly t steps. Then we have the
following.

f(w, t) =


0, if w = u and t = 0

∞, if w 6= u and t = 0

minz:(z,w) is an edge `(z, w) + f(z, t− 1), otherwise

,

where `(z, w) is the length of the edge (z, w). In other words, the shortest
way to get to w in t steps goes to some other vertex z in t − 1 steps then
takes the edge from z to w, so we try all possibilities for z. This can be
implemented using recursion and memoization, and we will want to calculate
f(v, k). When calculating f(w, t) for different values of w, t along the way,
there are at most n values for w and k + 1 vales for t. Also, if m is the
number of edges in the graph, when you consider all possible vertices in the
place of w, all loops combined loop over all edges once, for a total of m. So
the runtime is Θ((n + m)k). A solution which said running time O(n2k)
would get almost all the points (there are n possibilities for w and k + 1 for
t, and the loop that takes the min of all possibilities is at most n steps).

Question 8: In class I described Karatsuba’s algorithm for multiplying
two n-digit numbers, which recursively multiplied three pairs of n/2-digit
numbers then combined the results in O(n) time to get an overall running
time of Θ(nlog2 3).

Suppose that there existed an algorithm for multiplying two n-digit num-
bers which recursively multiplied two pairs of n/2-digit numbers then com-
bined the results in O(n) time. What would the running time then be?

Example solution: If T (n) is the running time for multiplying two n-
digit numbers, then we would have T (n) = 2T (n/2) +O(n). This is exactly
the recurrence for mergeSort, so overall we would have a running time of
O(n log2 n). One can also draw the recursion tree and see that there are
log2 n levels, each of which has total work n (level k will have 2k nodes, each
doing work O(n/2k)).
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