Practice Exam
Algorithms and Programming for High Schoolers
(AddisCoder)

Question 1: Imagine evaluating the following expressions in order in the
Python interpeter. For each expression written in red, write down what the
expression would evaluate to in the space below. If the expression would
cause an error in Python, then write Error.

>>>x =5
>>> 3 =7
>>> z = 2

>>> X *xy + z

>>> (x * y) + z

>>> x * (y + z)

>>>x %y

>>> 7 h X

>>> [] * z

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

(] x 2

[1] * z + x

str(2)

(il fol

(011 [1]

len(LLL111)

NURRN

X [2, 3]
y =[]

for i in xrange(x[0]**x[1]):

y += [i*2]

def isPrime(x):
if x < 2: return False

for i in xrange(2, x):

>>> if i*i >= x: Dbreak
>>> if x % i == 0: return False
>>> return True

>>> isPrime(1)

>>> isPrime(2)

>>> isPrime(9)

>>> isPrime(12)

Question 2: Consider the lists [1, [[1], [[[1]11, ... The depth of such
a list is the number of nested layers of brackets. So, depth([]) is 0,
depth([[11) is 1, depth([[[11]) is 2, etc. Write a function depth(L)
which takes such a 1ist and computes its depth. What’s the running time
of your function in terms of n, the number of brackets in the list?

Question 3: Consider the following code for testing whether a number is
prime or not.

def isPrime(n):
if n < 2: return False
for i in xrange(2, n):
if n % i == 0: return False
return True

What is the running time of this code as written? Is it correct? If it’s not
correct, suggest a minor change to the code which would make it correct.

Question 4: Write a function cubeRoot(n) which takes a positive integer
n and outputs the largest integer x such that ® < n.

(a) Give a solution with running time O(n'/3).
(b) Give a solution with running time O(logy n).

The running times above are assuming you can do arithmetic on integers
up to n in O(1) time.

Question 5: Suppose we have a list of numbers L[0],L[1],...,.L[n-1]. An
inversion in the list is a pair ¢,j such that ¢ < j but L[i] > L[j]. In other
words, an inversion is a pair of indices where the larger number comes before
the smaller number.

Describe an algorithm for counting the number of inversions in a list,
then implement your algorithm in Python as countInversions(L). Faster
running times get more points. Hint: The problem is solvable in ©(nlogyn)
time, though an easier solution takes ©(n?) time. You get more points for
giving a slow, correct solution than a fast, incorrect solution.

Question 6: We've discussed making change using the least number of
coins possible. What if we want to count how many different ways there are
of making change? For example, if the coins we have available are [1,5,10,25]
cents and we want to make change for 12 cents, there are 4 ways: (1) give
all 1-cent pieces, (2) give a 10-cent piece and two 1-cent pieces, (3) give two
5-cent pieces and two 1-cent pieces, and (4) give one 5-cent piece and seven
1-cent pieces. So, the answer in this case is 4.

Write a function change(L, n) which outputs the number of ways to
make change for n cents when the coin denominations available are those
in L. For example, change([1,5,10,25], 12) should return 4. What is the
running time of your solution? Faster running times get more points.

Question 7: Given a directed graph where each edge has a length, describe
an algorithm that takes as input two vertices u,v and an integer £ > 0 and
outputs the length of the shortest path from u to v which takes ezactly k
steps. The path is allowed to visit vertices multiple times (for example, the
path1l — 3 — 2 — 3 — T is a valid path from 1 to 7 of length 4, even though
it visits vertex 3 twice). What is the running time of your algorithm? You
do not have to write the code for it.

Question 8: In class I described Karatsuba’s algorithm for multiplying
two n-digit numbers, which recursively multiplied three pairs of n/2-digit
numbers then combined the results in O(n) time to get an overall running
time of ©(n'823).

Suppose that there existed an algorithm for multiplying two n-digit num-
bers which recursively multiplied two pairs of n/2-digit numbers then com-
bined the results in O(n) time. What would the running time then be?

