Final Exam Solutions
Algorithms and Programming for High Schoolers
(AddisCoder)

Problem | Score | Max Score

1 23 23

2 11 11

3 11 11

4 11 11

b 11 11

6 11 11

7 11 11

8 11 11
Total | 100 | 100

Name:

Contact (e-mail address or phone number):

Question 1: Imagine evaluating the following expressions in order in the
Python interpeter. For each expression in red, write down what the expres-
sion would evaluate to in the space below. If the expression would cause an
error in Python, then write Error. Each answer is worth 1 point.

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

x =5

vy =7

z =2

y/ x-z

-1

(y / %) -z

-1

y/ x - 2)

2

vy % (x - 2)

1

v h X

2

(L1131 [ol

(011
len([[1,[2,[3]]1],[4],[5]11)
3

len([[1, [2,[3]]1], [4], [5]1][0])
2

L = [[1,[2,[3]]],[4],[5]]

L + L[0]

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

(f1, [2, (3111, (41, (51, 1, [2, [31]]
L + L[o][0]

Error (cannot use + with 1list and int).
‘Ethiopia’ [3]

"
‘Ethiopia’ [3][0][0][:]
(o
‘abcd’ [:2]
‘ab’
‘abcd’ [2:]
‘cd’

‘abcd’ [1:2]

Error (w is undefined).
y =[]

w =10

while w > O:

y += [w]]

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

({101, (51, [21, [1]1]
def fibonacci(n):
if n < 2: return 1
return fibonacci(n-1) + n - 2
fibonacci(-2)
1
fibonacci(4)
4
fibonacci(b)
7
(1 '= [[1]

True

Question 2: Write a function countZeroes(n) which takes as input a posi-
tive int n and outputs the number of zeroes in n. For example, countZeroes(10)
is 1, countZeroes(50803) is 2, and countZeroes(547) is 0. What is the run-
ning time of your algorithm in terms of the number of digits D in n?

Example solution 1:

def countZeroes(n):
if n ==
return 0O
elif n%10 == O:
return 1 + countZeroes(n / 10)
return countZeroes(n / 10)

Example solution 2:

def countZeroes(n):

ans = 0
while n > O:
if n%10 == 0:
ans += 1
n /= 10

return ans

Example solution 3:

def countZeroes(n):
s = str(n)

ans = 0
for i in xrange(len(s)):
if s[i] == ‘0’:
ans += 1

return ans

All three above solutions have running time O(D) (which is ©(logy n)).

Question 3: You are given a list of pairs L = [[zg,y0l, [x1,11]1, ...,
[n—1,Yn—11] such that y; = z;4q for all 0 < ¢ < n — 2. When you
combine adjacent pairs [z;,y;] and [z;41,yir1] (recall y; = x;41), the new
pair [x;,y;+1] takes their place in the 1ist. Combining this pair has cost
i X yi X Yi+1. You need to keep combining adjacent pairs until you’re finally
left with the single pair [zg,yn—1], but you can choose the order in which
you combine adjacent pairs. Write a function bestCost (L) which calculates
the minimum cost of how to do this. What is your running time? (Justify
your answer.)

For example, consider the input L = [[1,5],[5,31,[3,7]1]. If you first
combine [1,5] and [5,3], the cost is 1 x 5 x 3 = 15. Then you are left with
the 1ist [[1,3],[3,7]], and combining these two has cost 1 x 3 x 7 = 21.
Thus the total cost is 15 + 21 = 36. The other option is to first combine
[5,3] and [3,7], for a cost of 5x3x7 = 105, producing the new pair [5,7].
The list is then [[1,5], [5,7]], and combining these has cost 1 x5x7 = 35,
for a total cost of 105 + 35 = 140. Thus, the first option was better, and
bestCost([[1,5],[5,3],[3,7]]) should return 36.

Example solution: Let’s rephrase the problem. We have a list of ele-
ments, which are pairs. Let’s call these elements zg,...,z,—1. We have an
operation @ that combines pairs (if you do [a,b] & [b,c], you get [a,c]),
and it “costs” you a x b x c. Now, we would like to evaluate the & operations
inrxg®x1P...Pxr,_1in an order that minimizes the sum of costs. This is
very similar to the “parenthesizing expressions” problem from Lecture 15.
We would like to pick the order to do the operations, i.e. parenthesize the
expression, so as to minimize the total cost.

The idea is then to use recursion with memoization. Let f(i,5) be the
cheapest way of combining the elements in L[i:j]. Then,

0, if i =j
f(i,j) = < minj<p<;{LLi1 [0] - LLk] [1] - L] [1]
+f(i,k)+ f(k+1,7)}, otherwise

The reason is that in any sequence of combining adjacent elements,
there’s always some pair of elements which is the last pair to be combined.
That pair is the result of merging everything between ¢ and k, and every-
thing between k + 1 and j, for some k. So, we try all possible k£ and take
the best choice. Below is an implementation.

def f£(L, i, j, mem):
if i == j:
return O
elif mem[i] [j] !'= -1:
return mem[i] [j]
mem[i] [j] = float(‘infinity’)
for i in xrange(i, j):
val = f(L, i, k, mem) + f(L, k + 1, j, mem)
mem[i] [j] = min(mem([i] [j], L[i][0]1=*L[k][11*L[j]1[1] + val)
return mem[i] [j]

def bestCost(L):
mem = []
for i in xrange(len(L)):
mem += [[-1]*len(L)]
return f(L, 0, len(L)-1, mem)

The running time is ©(n?).

Question 4: You are given a chessboard which has n rows and m columns.
The bottom-left square is (0,0), and the top-right is (n — 1,m — 1). You
want to get your piece from the bottom-left to the top-right. If your piece
is at (x,y), the next step it can either move to (z + 1,y), (x + 1,y + 1), or
(z,y+1), as long as the piece stays on the board. There is one catch though.
Squares on your chessboard are either green or red, and on odd moves (your
first, third, fifth, etc. moves) you can only move to red squares, and on even
moves you can only move to green squares. If ever you can’t make a move
because all squares next to you are the wrong color, then your piece dies.
Write a function isPossible(n,m,colors) which returns True if it
is possible to get from the bottom-left to the top-right corner without
dying and False otherwise. Also, before writing the code, describe in
words how your solution works: your description should not take more
than a couple sentences. colors is a list of n strings each of length m.
colors[i] [j] is ‘R’ if square (i,) is red, and otherwise is ‘G’. For exam-
ple, isPossible (3,3, [‘GGG’, ‘RRG’, ‘GGG’]) gives True. The board is

Example solution: One way to solve this problem is to create a graph:
each vertex represents a square in the chessboard together with whether
your next move should be to a ‘G’ or ‘R’. An edge goes from one vertex
to another if we can go from that square to another and the next moves of
both vertices should be different colors. Then we can do BFS or DFS to
see whether either the vertex (n —1,m —1,‘G’) or (n —1,m — 1, ‘R’) is
reachable from (0,0, ‘R’). Here’s an implementation using recursive DFS.

def makeArray(L, val):

if len(L) == 1:
return [vall*L[0]
ans = []

for i in xrange(L[0]):
ans += [makeArray(L[1:], val)]
return ans

we’re at vertex (x,y,c) where c is O if the next move should be red,
and c is 1 otherwise
def dfs(x, y, ¢, n, m, colors, seen):
if x==n-1 and y==m-1:
return True
dx = [1,1,0]
dy [1,0,1]
for i in xrange(3):
nx = x + dx[i]
ny = y + dyl[il
if nx>=0 and nx<n and ny>=0 and ny<m:
cellColor = 0

if colors[nx] [ny] == ‘G’:
cellColor =1
if ¢ == cellColor and not seen[nx] [ny] [1-c]:

the cell (nx, ny) has the right color
seen[nx] [ny] [1-c] = True
if dfs(nx, ny, 1-c, n, m, colors, seen):
return True
return False

def isPossible(n, m, colors):
seen = makeArray([n, m, 2], False)
return dfs(0, 0, O, n, m, colors, seen)

Question 5: Describe an algorithm that does the following. You are given
an integer n > 2 and must return the index ¢ of the first Fibonacci number
which is larger than n. Recall the Fibonacci numbers are Fy, Fy, Fy, F3,... =
1,1,2,3,... (each number is the sum of the previous two). So, if n = 7, then
the answer should be 5: the first Fibonacci number larger than 7 is F5 = 8.
If n = 2, then the answer should be 3, since the third Fibonacci number
F3 = 3 is the first Fibonacci number to be larger than 2.

You don’t need to implement your solution, but you should describe
how you would do it and also explain the running time assuming that all
arithmetic operations take O(1) time.

Example solution: Note the Fibonacci numbers are increasing (that is,
Fy < Fy < F5 < F3 < ...) and also that F;,, > n for all n > 1. Thus, we can
do a binary search. We know the answer must be between 0 and n, so we have
logy n levels of binary search, and at each level we need to compute £ib(mid)
for some value mid between 0 and n. We can write a function fib(x) to
compute the xth Fibonacci number using matrices and fast powering, as
in Lecture 13, so that we can compute fib(mid) in O(logyn) arithmetic
operations. Thus, this solution takes ©((log, n)?) arithmetic operations.

It is possible to do better by, for example, first proving that for all
i > 4, F; > 1.5"*. So, for n < Fy, we can just compute the answer
with if statements. For m > 4, we can binary search for the answer be-
tween 0 and [log; sn]. Thus, the number of iterations of binary search
is ©(logylog; s) = O(logylogy n), and in each iteration we have to com-
pute fib(mid) for mid = O(logyn) thus taking O(logylogyn) arithmetic
operations. Thus, overall, this solution takes ©((logylog, n)?) arithmetic
operations. The previous paragraph was enough to get 9/11 points for this
problem. In fact, a simple solution with a while loop also only requires
O(logy n) arithmetic operations.

def whichFib(n):

at = 1
a=1
b=1
while b <= n:
c=a+b
a,b = b,c
at += 1
if b > n:

return at

10

The reason this solution only requires ©(log, n) arithmetic operations is
that the while loop only goes until Fy; > n, but since Fy; > 1.5 for at > 4,
the loop can only go ©(logy n) steps.

11

Question 6: You are given a list L of ints that are all bigger than 1.
Write a function findPair (L) that returns a list [a,b] such that a® = b
and a, b are both in L. If no such pair exists, return []. For example,
findPair([9,5,2,7,3]) should return [3,9]. findPair([5,2,25,4]) can
either return [2,4] or [5,25]. findPair([9,12,14]) should return [].

Example solution: First we will sort L, then for each element a in L we
will binary search for a?.

binary search for z in L[x:y]
returns False if z is not in L[x:y], and True otherwise
def binarySearch(x, y, z, L):
if x ==
return L[x] == z
mid = (x + y)/2
if L[mid] == z:
return True
elif L[mid] < z:
return binarySearch(mid + 1, y, z, L)
else:
return binarySearch(x, mid - 1, z, L)

def findPair(L):
L.sort()
for a in L:
if binarySearch(0, len(L) - 1, axa, L):
return [a, axa]
return []

Suppose L has n elements. Sorting in the beginning takes ©(nlogyn)
time. Then, there is a for loop taking n steps, and each time through
the for loop we spend O(logyn) time to binary search. Thus, the overall
running time is ©(nlogy n). It is possible to solve this problem in O(n) time
using a technique known as hashing, but we haven’t covered that in this
course, so this ©(nlog, n) solution is enough to get full credit.

In fact, it is possible to get ©(nlog, n) time without binary searching:

12

def findPair(L):
L.sort()
at = 0
for a in L:
while at < len(L) and L[at] < ax*a:

at += 1
if at == len(L):
break

elif axa == L[at]:
return [a, L[at]]
return []

The solution above takes ©(nlogyn) time to sort, then afterward only
spends ©(n) time in the for and while loops. The point is that we try the
a from smallest to largest in the for loop since we’ve sorted. So, if for some
a we try L[i],L[i+1],...,.L[j] in the while loop and they were all smaller
than a? except for L[j], then when we try the next b in L we don’t need to
search from the beginning of L again: we can just keep searching from L[j]
(if the previous elements in L were smaller than a?, they’ll also be smaller
than b, so we don’t need to look at them again.)

13

Question 7: Given a directed graph where each edge has a length, describe
an algorithm that takes as input two vertices u, v and an integer £ > 0 and
outputs the length of the shortest path from u to v which takes exactly k
steps. The path is allowed to visit vertices multiple times (for example, the
path1 -3 — 2 — 3 — 7 is a valid path from 1 to 7 of length 4, even though
it visits vertex 3 twice). Furthermore, on odd moves (the first, third, fifth,
etc. moves), you must take the edge out of your current location which is
the longest (assume that no two edges have the same length). What is the
running time of your algorithm? You do not have to write the code for it.

Example solution: For a vertex w and integer ¢, let f(w,t) be the length
of the shortest path from u to w taking exactly ¢ steps. Then we have the
following.

0, ifw=wandt=0

Flw,t) = 00, ifw#wuandt=0

7 MiN.: (2) is the longest edge leaving z £(2, W) + f(2,t — 1), if ¢ is odd ’
Min. (.) is an edge £(2, W) + f(2,t — 1), otherwise

where /(z,w) is the length of the edge (z,w). In other words, the shortest
way to get to w in t steps goes to some other vertex z in t—1 steps then takes
the edge from z to w, so we try all possibilities for z. If ¢ is odd though, we
should make sure (z,w) is the longest edge leaving z to ensure we arrive at
w in the next step.

This can be implemented using recursion and memoization, and we will
want to calculate f(v,k). When calculating f(w,t) for different values of
w,t along the way, there are at most n values for w and k + 1 vales for t.
Also, if m is the number of edges in the graph, when you consider all possible
vertices in the place of w, all loops combined loop over all edges once, for
a total of m. So the runtime is ©((n + m)k). Before doing the recursion
we should also do a for loop over each vertex vertex then over each edge to
figure out, for each vertex z, what the longest edge leaving it is.

14

Question 8: We've discussed making change using the least number of
coins possible. What if we want to count how many different ways there are
of making change? Furthermore, we want to count the number of different
ways of making change when we’re only allowed to use an even number of
each coin type. For example, if the coins we have available are [1,5,10,25]
cents and we want to make change for 12 cents, there are 2 ways: (1) give
twelve 1-cent pieces, and (2) give two 5-cent pieces and two 1-cent pieces.
The other ways would involve giving an odd number of some coin, so we
can’t do it.

Write a function change(L,n) which outputs the number of ways to
make change for n cents when the coin denominations available are those in
L. For example, change([1,5,10,25], 12) should return 2. What is the
running time of your solution?

Example solution: This problem is reduces to the change problem from
the practice exam. Having to use each type of coin an even number of times
is the same as saying we can use each coin any number of times, but our coin
values are actually 2-L[0],2-L[1], etc. So, one way to solve this problem is
to just first double each element of L then call the change function from the
practice exam solutions. Or, you could just write it from scratch as follows:

def recurse(L, x, n, mem):
if n ==
return 1
elif x == len(L):
return 0O
elif mem[x][n] '= -1:
return mem[x] [n]
mem[x] [n] = recurse(L, x+1, n, mem)
if 2xL[x] <= n:
mem[x] [n] += recurse(L, x, n - 2*L[x], mem)
return mem[x] [n]

def change(L, n):
mem = []
for i in xrange(len(L)):
mem += [[-1]*(n+1)]
return recurse(L, 0, n, mem)

If the length of L is m, the running time is ©(nm) in the worst case.

15

